Lund, H. (2007). Renewable energy strategies for sustainable development. Energy, 32(6), 912-919. doi:10.1016/j.energy.2006.10.017
Omer, A. M. (2008). Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12(9), 2265-2300. doi:10.1016/j.rser.2007.05.001
Crabtree, G. W., & Lewis, N. S. (2007). Solar energy conversion. Physics Today, 60(3), 37-42. doi:10.1063/1.2718755
[+]
Lund, H. (2007). Renewable energy strategies for sustainable development. Energy, 32(6), 912-919. doi:10.1016/j.energy.2006.10.017
Omer, A. M. (2008). Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12(9), 2265-2300. doi:10.1016/j.rser.2007.05.001
Crabtree, G. W., & Lewis, N. S. (2007). Solar energy conversion. Physics Today, 60(3), 37-42. doi:10.1063/1.2718755
Gust, D., Moore, T. A., & Moore, A. L. (2009). Solar Fuels via Artificial Photosynthesis. Accounts of Chemical Research, 42(12), 1890-1898. doi:10.1021/ar900209b
Arakawa, H., & Sayama, K. (2000). Oxide semiconductor materials for solar light energy utilization. Research on Chemical Intermediates, 26(2), 145-152. doi:10.1163/156856700x00183
Sang, Y., Liu, H., & Umar, A. (2014). Photocatalysis from UV/Vis to Near-Infrared Light: Towards Full Solar-Light Spectrum Activity. ChemCatChem, 7(4), 559-573. doi:10.1002/cctc.201402812
Wang, Q., & Domen, K. (2019). Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chemical Reviews, 120(2), 919-985. doi:10.1021/acs.chemrev.9b00201
Liu, Z., & Yan, F. (2012). The Application of Bismuth-Based Oxides in Organic-Inorganic Hybrid Photovoltaic Devices. Journal of the American Ceramic Society, 95(6), 1944-1948. doi:10.1111/j.1551-2916.2012.05088.x
Raza, W., Haque, M. M., Muneer, M., Harada, T., & Matsumura, M. (2015). Synthesis, characterization and photocatalytic performance of visible light induced bismuth oxide nanoparticle. Journal of Alloys and Compounds, 648, 641-650. doi:10.1016/j.jallcom.2015.06.245
Gomez, C. L., Depablos-Rivera, O., Silva-Bermudez, P., Muhl, S., Zeinert, A., Lejeune, M., … Rodil, S. E. (2015). Opto-electronic properties of bismuth oxide films presenting different crystallographic phases. Thin Solid Films, 578, 103-112. doi:10.1016/j.tsf.2015.02.020
MEDERNACH, J. W., & SNYDER, R. L. (1978). Powder Diffraction Patterns and Structures of the Bismuth Oxides. Journal of the American Ceramic Society, 61(11-12), 494-497. doi:10.1111/j.1151-2916.1978.tb16125.x
Leontie, L., Caraman, M., Alexe, M., & Harnagea, C. (2002). Structural and optical characteristics of bismuth oxide thin films. Surface Science, 507-510, 480-485. doi:10.1016/s0039-6028(02)01289-x
Xiao, X., Liu, C., Hu, R., Zuo, X., Nan, J., Li, L., & Wang, L. (2012). Oxygen-rich bismuth oxyhalides: generalized one-pot synthesis, band structures and visible-light photocatalytic properties. Journal of Materials Chemistry, 22(43), 22840. doi:10.1039/c2jm33556e
Weidong, H., Wei, Q., Xiaohong, W., Xianbo, D., Long, C., & Zhaohua, J. (2007). The photocatalytic properties of bismuth oxide films prepared through the sol–gel method. Thin Solid Films, 515(13), 5362-5365. doi:10.1016/j.tsf.2007.01.031
Duan, F., Zheng, Y., Liu, L., Chen, M., & Xie, Y. (2010). Synthesis and photocatalytic behaviour of 3D flowerlike bismuth oxide formate architectures. Materials Letters, 64(14), 1566-1569. doi:10.1016/j.matlet.2010.04.046
Lee, G.-J., Zheng, Y.-C., & Wu, J. J. (2018). Fabrication of hierarchical bismuth oxyhalides (BiOX, X = Cl, Br, I) materials and application of photocatalytic hydrogen production from water splitting. Catalysis Today, 307, 197-204. doi:10.1016/j.cattod.2017.04.044
Huang, H., He, Y., Lin, Z., Kang, L., & Zhang, Y. (2013). Two Novel Bi-Based Borate Photocatalysts: Crystal Structure, Electronic Structure, Photoelectrochemical Properties, and Photocatalytic Activity under Simulated Solar Light Irradiation. The Journal of Physical Chemistry C, 117(44), 22986-22994. doi:10.1021/jp4084184
Liu, Y., Wang, Z., Huang, B., Yang, K., Zhang, X., Qin, X., & Dai, Y. (2010). Preparation, electronic structure, and photocatalytic properties of Bi2O2CO3 nanosheet. Applied Surface Science, 257(1), 172-175. doi:10.1016/j.apsusc.2010.06.058
Huang, H., He, Y., Li, X., Li, M., Zeng, C., Dong, F., … Zhang, Y. (2015). Bi2O2(OH)(NO3) as a desirable [Bi2O2]2+layered photocatalyst: strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability. Journal of Materials Chemistry A, 3(48), 24547-24556. doi:10.1039/c5ta07655b
Ruleova, P., Drasar, C., Lostak, P., Li, C.-P., Ballikaya, S., & Uher, C. (2010). Thermoelectric properties of Bi2O2Se. Materials Chemistry and Physics, 119(1-2), 299-302. doi:10.1016/j.matchemphys.2009.08.067
Luu, S. D. N., & Vaqueiro, P. (2015). Synthesis, characterisation and thermoelectric properties of the oxytelluride Bi2O2Te. Journal of Solid State Chemistry, 226, 219-223. doi:10.1016/j.jssc.2015.02.026
Yu, X., Marks, T. J., & Facchetti, A. (2016). Metal oxides for optoelectronic applications. Nature Materials, 15(4), 383-396. doi:10.1038/nmat4599
Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 13(18), 5106-5112. doi:10.1002/chem.200601003
Usman, M., Mendiratta, S., & Lu, K.-L. (2016). Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials. Advanced Materials, 29(6), 1605071. doi:10.1002/adma.201605071
Tachikawa, T., Choi, J. R., Fujitsuka, M., & Majima, T. (2008). Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles: Elucidating Differences between Metal-Organic Frameworks and Semiconductor Metal Oxides. The Journal of Physical Chemistry C, 112(36), 14090-14101. doi:10.1021/jp803620v
Feyand, M., Mugnaioli, E., Vermoortele, F., Bueken, B., Dieterich, J. M., Reimer, T., … Stock, N. (2012). Automated Diffraction Tomography for the Structure Elucidation of Twinned, Sub-micrometer Crystals of a Highly Porous, Catalytically Active Bismuth Metal-Organic Framework. Angewandte Chemie International Edition, 51(41), 10373-10376. doi:10.1002/anie.201204963
Wang, G., Sun, Q., Liu, Y., Huang, B., Dai, Y., Zhang, X., & Qin, X. (2014). A Bismuth-Based Metal-Organic Framework as an Efficient Visible-Light-Driven Photocatalyst. Chemistry - A European Journal, 21(6), 2364-2367. doi:10.1002/chem.201405047
Wang, G., Liu, Y., Huang, B., Qin, X., Zhang, X., & Dai, Y. (2015). A novel metal–organic framework based on bismuth and trimesic acid: synthesis, structure and properties. Dalton Transactions, 44(37), 16238-16241. doi:10.1039/c5dt03111g
Wang, Y., Takki, S., Cheung, O., Xu, H., Wan, W., Öhrström, L., & Inge, A. K. (2017). Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction. Chemical Communications, 53(52), 7018-7021. doi:10.1039/c7cc03180g
Köppen, M., Dhakshinamoorthy, A., Inge, A. K., Cheung, O., Ångström, J., Mayer, P., & Stock, N. (2018). Synthesis, Transformation, Catalysis, and Gas Sorption Investigations on the Bismuth Metal-Organic Framework CAU-17. European Journal of Inorganic Chemistry, 2018(30), 3496-3503. doi:10.1002/ejic.201800321
Gándara, F., Gómez-Lor, B., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, A. (2009). A new scandium metal organic framework built up from octadecasil zeolitic cages as heterogeneous catalyst. Chemical Communications, (17), 2393. doi:10.1039/b900841a
Goswami, S., Adhikary, A., Jena, H. S., Biswas, S., & Konar, S. (2013). A 3D Iron(II)-Based MOF with Squashed Cuboctahedral Nanoscopic Cages Showing Spin-Canted Long-Range Antiferromagnetic Ordering. Inorganic Chemistry, 52(20), 12064-12069. doi:10.1021/ic401886f
Usov, P. M., Keene, T. D., & D’Alessandro, D. M. (2013). A Comparative Study of the Structural, Optical, and Electrochemical Properties of Squarate-Based Coordination Frameworks. Australian Journal of Chemistry, 66(4), 429. doi:10.1071/ch12474
Liu, Z., Lin, K., Ren, Y., Kato, K., Cao, Y., Deng, J., … Xing, X. (2019). Inorganic–organic hybridization induced uniaxial zero thermal expansion in MC4O4 (M = Ba, Pb). Chemical Communications, 55(28), 4107-4110. doi:10.1039/c9cc00226j
Allen, L. C. (1989). Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. Journal of the American Chemical Society, 111(25), 9003-9014. doi:10.1021/ja00207a003
Goswami, S., Jena, H. S., & Konar, S. (2014). Study of Heterogeneous Catalysis by Iron-Squarate based 3D Metal Organic Framework for the Transformation of Tetrazines to Oxadiazole derivatives. Inorganic Chemistry, 53(14), 7071-7073. doi:10.1021/ic5003258
Lin, R.-B., Li, L., Zhou, H.-L., Wu, H., He, C., Li, S., … Chen, B. (2018). Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nature Materials, 17(12), 1128-1133. doi:10.1038/s41563-018-0206-2
Li, L., Guo, L., Zhang, Z., Yang, Q., Yang, Y., Bao, Z., … Li, J. (2019). A Robust Squarate-Based Metal–Organic Framework Demonstrates Record-High Affinity and Selectivity for Xenon over Krypton. Journal of the American Chemical Society, 141(23), 9358-9364. doi:10.1021/jacs.9b03422
Wang, Ke, Feng, Ho, Chang, Chuang, & Lee. (2019). Synthesis, Structural Characterization and Ligand-Enhanced Photo-Induced Color-Changing Behavior of Two Hydrogen-Bonded Ho(III)-Squarate Supramolecular Compounds. Polymers, 11(8), 1369. doi:10.3390/polym11081369
Boultif, A., & Louër, D. (2004). Powder pattern indexing with the dichotomy method. Journal of Applied Crystallography, 37(5), 724-731. doi:10.1107/s0021889804014876
De Wolff, P. M. (1968). A simplified criterion for the reliability of a powder pattern indexing. Journal of Applied Crystallography, 1(2), 108-113. doi:10.1107/s002188986800508x
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., & Falcicchio, A. (2013). EXPO2013: a kit of tools for phasing crystal structures from powder data. Journal of Applied Crystallography, 46(4), 1231-1235. doi:10.1107/s0021889813013113
Spek, A. L. (2009). Structure validation in chemical crystallography. Acta Crystallographica Section D Biological Crystallography, 65(2), 148-155. doi:10.1107/s090744490804362x
Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65-71. doi:10.1107/s0021889869006558
Gonze, X., Amadon, B., Anglade, P.-M., Beuken, J.-M., Bottin, F., Boulanger, P., … Zwanziger, J. W. (2009). ABINIT: First-principles approach to material and nanosystem properties. Computer Physics Communications, 180(12), 2582-2615. doi:10.1016/j.cpc.2009.07.007
Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406
Hamann, D. R. (2013). Optimized norm-conserving Vanderbilt pseudopotentials. Physical Review B, 88(8). doi:10.1103/physrevb.88.085117
Hinuma, Y., Pizzi, G., Kumagai, Y., Oba, F., & Tanaka, I. (2017). Band structure diagram paths based on crystallography. Computational Materials Science, 128, 140-184. doi:10.1016/j.commatsci.2016.10.015
Becke, A. D., & Johnson, E. R. (2006). A simple effective potential for exchange. The Journal of Chemical Physics, 124(22), 221101. doi:10.1063/1.2213970
Tran, F., & Blaha, P. (2009). Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Physical Review Letters, 102(22). doi:10.1103/physrevlett.102.226401
Christensen, A. N., Jensen, T. R., Scarlett, N. V. Y., Madsen, I. C., Hanson, J. C., & Altomare, A. (2003). In-situ X-ray powder diffraction studies of hydrothermal and thermal decomposition reactions of basic bismuth(iii) nitrates in the temperature range 20–650 °C. Dalton Trans., (16), 3278-3282. doi:10.1039/b303926a
Suzuki, H., Kunioku, H., Higashi, M., Tomita, O., Kato, D., Kageyama, H., & Abe, R. (2018). Lead Bismuth Oxyhalides PbBiO2X (X = Cl, Br) as Visible-Light-Responsive Photocatalysts for Water Oxidation: Role of Lone-Pair Electrons in Valence Band Engineering. Chemistry of Materials, 30(17), 5862-5869. doi:10.1021/acs.chemmater.8b01385
Wu, X., Li, M., Li, J., Zhang, G., & Yin, S. (2017). A sillenite-type Bi12MnO20 photocatalyst: UV, visible and infrared lights responsive photocatalytic properties induced by the hybridization of Mn 3d and O 2p orbitals. Applied Catalysis B: Environmental, 219, 132-141. doi:10.1016/j.apcatb.2017.07.025
Millet, P., Sabadié, L., Galy, J., & Trombe, J. . (2003). Hydrothermal synthesis and structure of the first tin(II) squarate Sn2O(C4O4)(H2O)—comparison with Sn2[Sn2O2F4]. Journal of Solid State Chemistry, 173(1), 49-53. doi:10.1016/s0022-4596(03)00078-1
Bataille, T., Bouhali, A., Kouvatas, C., Trifa, C., Audebrand, N., & Boudaren, C. (2019). Hydrates and polymorphs of lead squarate Pb(C4O4): Structural transformations studied by in situ X-ray powder diffraction and solid state NMR. Polyhedron, 164, 123-131. doi:10.1016/j.poly.2019.02.047
Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110
Junqueira, G. M. A., Rocha, W. R., De Almeida, W. B., & Dos Santos, H. F. (2002). Theoretical analysis of the oxocarbons: The solvent and counter-ion effects on the structure and spectroscopic properties of the squarate ion. Physical Chemistry Chemical Physics, 5(3), 437-445. doi:10.1039/b209740k
Cao, J., Xu, B., Lin, H., Luo, B., & Chen, S. (2012). Novel heterostructured Bi2S3/BiOI photocatalyst: facile preparation, characterization and visible light photocatalytic performance. Dalton Transactions, 41(37), 11482. doi:10.1039/c2dt30883e
Keller, E., & Krämer, V. (2005). A Strong Deviation from Vegard’s Rule: X-Ray Powder Investigations of the Three Quasi-Binary Phase Systems BiOX–BiOY (X, Y = Cl, Br, I). Zeitschrift für Naturforschung B, 60(12), 1255-1263. doi:10.1515/znb-2005-1207
Gao, X., Zhao, H., Zhao, X., Li, Z., Gao, Z., Wang, Y., & Huang, H. (2018). Aqueous phase sensing of bismuth ion using fluorescent metal-organic framework. Sensors and Actuators B: Chemical, 266, 323-328. doi:10.1016/j.snb.2018.03.139
Deibert, B. J., Velasco, E., Liu, W., Teat, S. J., Lustig, W. P., & Li, J. (2016). High-Performance Blue-Excitable Yellow Phosphor Obtained from an Activated Solvochromic Bismuth-Fluorophore Metal–Organic Framework. Crystal Growth & Design, 16(8), 4178-4182. doi:10.1021/acs.cgd.6b00622
De Mello DonegÁ, C., Ribeiro, S. J. L., Gon çalves, R. R., & Blasse, G. (1996). Luminescence and non-radiative processes in lanthanide squarate hydrates. Journal of Physics and Chemistry of Solids, 57(11), 1727-1734. doi:10.1016/0022-3697(96)00032-7
He, R., Zhou, J., Fu, H., Zhang, S., & Jiang, C. (2018). Room-temperature in situ fabrication of Bi 2 O 3 /g-C 3 N 4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. Applied Surface Science, 430, 273-282. doi:10.1016/j.apsusc.2017.07.191
ZHANG, K., LIU, C., HUANG, F., ZHENG, C., & WANG, W. (2006). Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Applied Catalysis B: Environmental, 68(3-4), 125-129. doi:10.1016/j.apcatb.2006.08.002
Corkett, A. J., Chen, Z., Bogdanovski, D., Slabon, A., & Dronskowski, R. (2019). Band Gap Tuning in Bismuth Oxide Carbodiimide Bi2O2NCN. Inorganic Chemistry, 58(9), 6467-6473. doi:10.1021/acs.inorgchem.9b00670
[-]