- -

Beamforming for large-area scan and improved SNR in array-based photoacoustic microscopy

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Beamforming for large-area scan and improved SNR in array-based photoacoustic microscopy

Show full item record

Cebrecos, A.; García-Garrigós, JJ.; Descals, A.; Jimenez, N.; Benlloch Baviera, JM.; Camarena Femenia, F. (2021). Beamforming for large-area scan and improved SNR in array-based photoacoustic microscopy. Ultrasonics. 111:1-8. https://doi.org/10.1016/j.ultras.2020.106317

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164058

Files in this item

Item Metadata

Title: Beamforming for large-area scan and improved SNR in array-based photoacoustic microscopy
Author: Cebrecos, Alejandro García-Garrigós, J. J. Descals, A. Jimenez, Noe Benlloch Baviera, Jose María Camarena Femenia, Francisco
UPV Unit: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Embargo end date: 2022-12-05
Abstract:
[EN] Beamforming enhances the performance of array-based photoacoustic microscopy (PAM) systems for large-area scan. In this study, we quantify the imaging performance of a large field-of-view optical-resolution ...[+]
Subjects: Photoacoustic imaging , OR-PAM , Array-based , DAS beamforming , Large-area scan , Pulsed laser diode
Copyrigths: Embargado
Source:
Ultrasonics. (issn: 0041-624X )
DOI: 10.1016/j.ultras.2020.106317
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.ultras.2020.106317
Project ID:
info:eu-repo/grantAgreement/AVI//INNCON%2F2020%2F009/
...[+]
info:eu-repo/grantAgreement/AVI//INNCON%2F2020%2F009/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F229/
info:eu-repo/grantAgreement/ESF//MIN19-VAL-I3M-004/
info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F108/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F022/ES/EQUIPOS PARA TECNICAS MIXTAS ELECTROMAGNETICAS-ULTRASONICAS PARA IMAGEN MEDICA/
info:eu-repo/grantAgreement/GVA//GJIDI%2F2018%2FA%2F249/ES/AYUDA GARANTIA JUVENIL GVA-TECNOLOGIA ULTRASONICA PARA APLICACIONES MEDICAS E INDUSTRIALES/
info:eu-repo/grantAgreement/AVI//INNCON00%2F18%2F9/
info:eu-repo/grantAgreement/UPV//PAID-10-19/
info:eu-repo/grantAgreement/AEI//IJC2018-037897-I/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111436RB-C22/ES/NEW TECHNIQUES FOR MULTIMODAL MOLECULAR ELASTOGRAPHIC IMAGING/
[-]
Thanks:
This research has been supported by the Spanish Ministry of Science, Innovation and Universities through grant "Juan de la Cierva - Incorporación" (IJC2018-037897-I), and program "Proyectos I+D+i 2019, Spain" ...[+]
Type: Artículo

References

Yao, J., & Wang, L. V. (2013). Photoacoustic microscopy. Laser & Photonics Reviews, 7(5), 758-778. doi:10.1002/lpor.201200060

Jeon, S., Kim, J., Lee, D., Baik, J. W., & Kim, C. (2019). Review on practical photoacoustic microscopy. Photoacoustics, 15, 100141. doi:10.1016/j.pacs.2019.100141

Beard, P. (2011). Biomedical photoacoustic imaging. Interface Focus, 1(4), 602-631. doi:10.1098/rsfs.2011.0028 [+]
Yao, J., & Wang, L. V. (2013). Photoacoustic microscopy. Laser & Photonics Reviews, 7(5), 758-778. doi:10.1002/lpor.201200060

Jeon, S., Kim, J., Lee, D., Baik, J. W., & Kim, C. (2019). Review on practical photoacoustic microscopy. Photoacoustics, 15, 100141. doi:10.1016/j.pacs.2019.100141

Beard, P. (2011). Biomedical photoacoustic imaging. Interface Focus, 1(4), 602-631. doi:10.1098/rsfs.2011.0028

Maslov, K., Zhang, H. F., Hu, S., & Wang, L. V. (2008). Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Optics Letters, 33(9), 929. doi:10.1364/ol.33.000929

Maslov, K., Stoica, G., & Wang, L. V. (2005). In vivo dark-field reflection-mode photoacoustic microscopy. Optics Letters, 30(6), 625. doi:10.1364/ol.30.000625

Wang, L. V., & Yao, J. (2016). A practical guide to photoacoustic tomography in the life sciences. Nature Methods, 13(8), 627-638. doi:10.1038/nmeth.3925

Zhang, C., Maslov, K., & Wang, L. V. (2010). Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Optics Letters, 35(19), 3195. doi:10.1364/ol.35.003195

Li, M.-L., Wang, J. C., Schwartz, J. A., Gill-Sharp, K. L., Stoica, G., & Wang, L. V. (2009). In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. Journal of Biomedical Optics, 14(1), 010507. doi:10.1117/1.3081556

Zhong, H., Duan, T., Lan, H., Zhou, M., & Gao, F. (2018). Review of Low-Cost Photoacoustic Sensing and Imaging Based on Laser Diode and Light-Emitting Diode. Sensors, 18(7), 2264. doi:10.3390/s18072264

Allen, T. J., & Beard, P. C. (2006). Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging. Optics Letters, 31(23), 3462. doi:10.1364/ol.31.003462

Zeng, L., Liu, G., Yang, D., & Ji, X. (2013). Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation. Applied Physics Letters, 102(5), 053704. doi:10.1063/1.4791566

Wang, T., Nandy, S., Salehi, H. S., Kumavor, P. D., & Zhu, Q. (2014). A low-cost photoacoustic microscopy system with a laser diode excitation. Biomedical Optics Express, 5(9), 3053. doi:10.1364/boe.5.003053

Zeng, L., Liu, G., Yang, D., & Ji, X. (2014). Cost-efficient laser-diode-induced optical-resolution photoacoustic microscopy for two-dimensional/three-dimensional biomedical imaging. Journal of Biomedical Optics, 19(7), 076017. doi:10.1117/1.jbo.19.7.076017

Hariri, A., Fatima, A., Mohammadian, N., Mahmoodkalayeh, S., Ansari, M. A., Bely, N., & Avanaki, M. R. N. (2017). Development of low-cost photoacoustic imaging systems using very low-energy pulsed laser diodes. Journal of Biomedical Optics, 22(7), 075001. doi:10.1117/1.jbo.22.7.075001

Erfanzadeh, M., Kumavor, P. D., & Zhu, Q. (2018). Laser scanning laser diode photoacoustic microscopy system. Photoacoustics, 9, 1-9. doi:10.1016/j.pacs.2017.10.001

Zeng, L., Piao, Z., Huang, S., Jia, W., & Chen, Z. (2015). Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation. Optics Express, 23(24), 31026. doi:10.1364/oe.23.031026

Hariri, A., Lemaster, J., Wang, J., Jeevarathinam, A. S., Chao, D. L., & Jokerst, J. V. (2018). The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging. Photoacoustics, 9, 10-20. doi:10.1016/j.pacs.2017.11.001

Erfanzadeh, M., & Zhu, Q. (2019). Photoacoustic imaging with low-cost sources; A review. Photoacoustics, 14, 1-11. doi:10.1016/j.pacs.2019.01.004

Yao, J., & Wang, L. V. (2014). Sensitivity of photoacoustic microscopy. Photoacoustics, 2(2), 87-101. doi:10.1016/j.pacs.2014.04.002

Allen, T. J., Ogunlade, O., Zhang, E., & Beard, P. C. (2018). Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor. Biomedical Optics Express, 9(2), 650. doi:10.1364/boe.9.000650

Song, L., Maslov, K., Shung, K. K., & Wang, L. V. (2010). Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo. Journal of Biomedical Optics, 15(2), 021303. doi:10.1117/1.3333545

Song, L., Maslov, K., & Wang, L. V. (2011). Multifocal optical-resolution photoacoustic microscopy in vivo. Optics Letters, 36(7), 1236. doi:10.1364/ol.36.001236

Zheng, F., Zhang, X., Chiu, C. T., Zhou, B. L., Shung, K. K., Zhang, H. F., & Jiao, S. (2012). Laser-scanning photoacoustic microscopy with ultrasonic phased array transducer. Biomedical Optics Express, 3(11), 2694. doi:10.1364/boe.3.002694

Kempski, K. M., Graham, M. T., Gubbi, M. R., Palmer, T., & Lediju Bell, M. A. (2020). Application of the generalized contrast-to-noise ratio to assess photoacoustic image quality. Biomedical Optics Express, 11(7), 3684. doi:10.1364/boe.391026

Cook, J. R., Bouchard, R. R., & Emelianov, S. Y. (2011). Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging. Biomedical Optics Express, 2(11), 3193. doi:10.1364/boe.2.003193

Park, J., Jeon, S., Meng, J., Song, L., Lee, J. S., & Kim, C. (2016). Delay-multiply-and-sum-based synthetic aperture focusing in photoacoustic microscopy. Journal of Biomedical Optics, 21(3), 036010. doi:10.1117/1.jbo.21.3.036010

Mozaffarzadeh, M., Varnosfaderani, M. H. H., Sharma, A., Pramanik, M., de Jong, N., & Verweij, M. D. (2019). Enhanced contrast acoustic‐resolution photoacoustic microscopy using double‐stage delay‐multiply‐and‐sum beamformer for vasculature imaging. Journal of Biophotonics, 12(11). doi:10.1002/jbio.201900133

Matrone, G., Ramalli, A., Tortoli, P., & Magenes, G. (2018). Experimental evaluation of ultrasound higher-order harmonic imaging with Filtered-Delay Multiply And Sum (F-DMAS) non-linear beamforming. Ultrasonics, 86, 59-68. doi:10.1016/j.ultras.2018.01.002

Paridar, R., Mozaffarzadeh, M., Periyasamy, V., Pramanik, M., Mehrmohammadi, M., & Orooji, M. (2019). Sparsity-based beamforming to enhance two-dimensional linear-array photoacoustic tomography. Ultrasonics, 96, 55-63. doi:10.1016/j.ultras.2019.03.010

Shamekhi, S., Periyasamy, V., Pramanik, M., Mehrmohammadi, M., & Mohammadzadeh Asl, B. (2020). Eigenspace-based minimum variance beamformer combined with sign coherence factor: Application to linear-array photoacoustic imaging. Ultrasonics, 108, 106174. doi:10.1016/j.ultras.2020.106174

Deng, Z., Yang, X., Gong, H., & Luo, Q. (2012). Adaptive synthetic-aperture focusing technique for microvasculature imaging using photoacoustic microscopy. Optics Express, 20(7), 7555. doi:10.1364/oe.20.007555

Nakahata, K., Karakawa, K., Ogi, K., Mizukami, K., Ohira, K., Maruyama, M., … Shiina, T. (2019). Three-dimensional SAFT imaging for anisotropic materials using photoacoustic microscopy. Ultrasonics, 98, 82-87. doi:10.1016/j.ultras.2019.05.006

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record