- -

Beamforming for large-area scan and improved SNR in array-based photoacoustic microscopy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Beamforming for large-area scan and improved SNR in array-based photoacoustic microscopy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cebrecos, Alejandro es_ES
dc.contributor.author García-Garrigós, J. J. es_ES
dc.contributor.author Descals, A. es_ES
dc.contributor.author Jimenez, Noe es_ES
dc.contributor.author Benlloch Baviera, Jose María es_ES
dc.contributor.author Camarena Femenia, Francisco es_ES
dc.date.accessioned 2021-03-23T04:31:30Z
dc.date.available 2021-03-23T04:31:30Z
dc.date.issued 2021 es_ES
dc.identifier.issn 0041-624X es_ES
dc.identifier.uri http://hdl.handle.net/10251/164058
dc.description.abstract [EN] Beamforming enhances the performance of array-based photoacoustic microscopy (PAM) systems for large-area scan. In this study, we quantify the imaging performance of a large field-of-view optical-resolution photoacoustic-microscopy system using an phased-array detector. The system combines a low-cost pulsed-laser diode with a 128-element linear ultrasound probe. Signal-to-noise ratio (SNR) and generalized contrast-to-noise ratio (gCNR) are quantified using the phased-array detector and applying three beamforming strategies: a no-beamforming method equivalent to a single-element flat transducer, a fixed focus beamforming method that mimics a single-element focused transducer, and a dynamic focus beamforming using a delay-and-sum (DAS) algorithm. The imaging capabilities of the system are demonstrated generating high-resolution images of tissue-mimicking phantoms containing sub-millimetre ink tubes and an ex vivo rabbit¿s ear. The results show that dynamic focus DAS beamforming increases and homogenizes SNR along 1-cm2 images, reaching values up to 15 dB compared to an unfocused detector and up to 30 dB compared to out-of-focus regions of the fixed focus configuration. Moreover, the obtained values of gCNR using the DAS beamformer indicate an excellent target visibility, both on phantoms and ex vivo. This strategy makes it possible to scan larger surfaces compared to standard configurations using single-element detectors, paving the way for advanced array-based PAM systems. es_ES
dc.description.sponsorship This research has been supported by the Spanish Ministry of Science, Innovation and Universities through grant "Juan de la Cierva - Incorporación" (IJC2018-037897-I), and program "Proyectos I+D+i 2019, Spain" (PID2019-111436RB-C22), by Programa Operativo Empleo Juvenil, Spain 2014-2020 (MIN19-VAL-I3M-004), and by the Agència Valenciana de la Innovació, Spain through grant INNCON00/2020/009. Action co-financed by the European Union through the Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) of the Comunitat Valenciana 2014-2020 (IDIFEDER/2018/022). A.C. received financial support from Generalitat Valenciana, Spain and Universitat Politècnica de València, Spain through the grants APOSTD/2018/229 and program PAID-10-19, respectively. A.D. received support from Generalitat Valenciana, Spain through grant GJIDI/2018/A/249. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Ultrasonics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Photoacoustic imaging es_ES
dc.subject OR-PAM es_ES
dc.subject Array-based es_ES
dc.subject DAS beamforming es_ES
dc.subject Large-area scan es_ES
dc.subject Pulsed laser diode es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Beamforming for large-area scan and improved SNR in array-based photoacoustic microscopy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ultras.2020.106317 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNCON%2F2020%2F009/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F229/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ESF//MIN19-VAL-I3M-004/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F108/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F022/ES/EQUIPOS PARA TECNICAS MIXTAS ELECTROMAGNETICAS-ULTRASONICAS PARA IMAGEN MEDICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GJIDI%2F2018%2FA%2F249/ES/AYUDA GARANTIA JUVENIL GVA-TECNOLOGIA ULTRASONICA PARA APLICACIONES MEDICAS E INDUSTRIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNCON00%2F18%2F9/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-19/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//IJC2018-037897-I/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111436RB-C22/ES/NEW TECHNIQUES FOR MULTIMODAL MOLECULAR ELASTOGRAPHIC IMAGING/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Cebrecos, A.; García-Garrigós, JJ.; Descals, A.; Jimenez, N.; Benlloch Baviera, JM.; Camarena Femenia, F. (2021). Beamforming for large-area scan and improved SNR in array-based photoacoustic microscopy. Ultrasonics. 111:1-8. https://doi.org/10.1016/j.ultras.2020.106317 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ultras.2020.106317 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 111 es_ES
dc.identifier.pmid 33310407 es_ES
dc.relation.pasarela S\426604 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.description.references Yao, J., & Wang, L. V. (2013). Photoacoustic microscopy. Laser & Photonics Reviews, 7(5), 758-778. doi:10.1002/lpor.201200060 es_ES
dc.description.references Jeon, S., Kim, J., Lee, D., Baik, J. W., & Kim, C. (2019). Review on practical photoacoustic microscopy. Photoacoustics, 15, 100141. doi:10.1016/j.pacs.2019.100141 es_ES
dc.description.references Beard, P. (2011). Biomedical photoacoustic imaging. Interface Focus, 1(4), 602-631. doi:10.1098/rsfs.2011.0028 es_ES
dc.description.references Maslov, K., Zhang, H. F., Hu, S., & Wang, L. V. (2008). Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Optics Letters, 33(9), 929. doi:10.1364/ol.33.000929 es_ES
dc.description.references Maslov, K., Stoica, G., & Wang, L. V. (2005). In vivo dark-field reflection-mode photoacoustic microscopy. Optics Letters, 30(6), 625. doi:10.1364/ol.30.000625 es_ES
dc.description.references Wang, L. V., & Yao, J. (2016). A practical guide to photoacoustic tomography in the life sciences. Nature Methods, 13(8), 627-638. doi:10.1038/nmeth.3925 es_ES
dc.description.references Zhang, C., Maslov, K., & Wang, L. V. (2010). Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Optics Letters, 35(19), 3195. doi:10.1364/ol.35.003195 es_ES
dc.description.references Li, M.-L., Wang, J. C., Schwartz, J. A., Gill-Sharp, K. L., Stoica, G., & Wang, L. V. (2009). In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. Journal of Biomedical Optics, 14(1), 010507. doi:10.1117/1.3081556 es_ES
dc.description.references Zhong, H., Duan, T., Lan, H., Zhou, M., & Gao, F. (2018). Review of Low-Cost Photoacoustic Sensing and Imaging Based on Laser Diode and Light-Emitting Diode. Sensors, 18(7), 2264. doi:10.3390/s18072264 es_ES
dc.description.references Allen, T. J., & Beard, P. C. (2006). Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging. Optics Letters, 31(23), 3462. doi:10.1364/ol.31.003462 es_ES
dc.description.references Zeng, L., Liu, G., Yang, D., & Ji, X. (2013). Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation. Applied Physics Letters, 102(5), 053704. doi:10.1063/1.4791566 es_ES
dc.description.references Wang, T., Nandy, S., Salehi, H. S., Kumavor, P. D., & Zhu, Q. (2014). A low-cost photoacoustic microscopy system with a laser diode excitation. Biomedical Optics Express, 5(9), 3053. doi:10.1364/boe.5.003053 es_ES
dc.description.references Zeng, L., Liu, G., Yang, D., & Ji, X. (2014). Cost-efficient laser-diode-induced optical-resolution photoacoustic microscopy for two-dimensional/three-dimensional biomedical imaging. Journal of Biomedical Optics, 19(7), 076017. doi:10.1117/1.jbo.19.7.076017 es_ES
dc.description.references Hariri, A., Fatima, A., Mohammadian, N., Mahmoodkalayeh, S., Ansari, M. A., Bely, N., & Avanaki, M. R. N. (2017). Development of low-cost photoacoustic imaging systems using very low-energy pulsed laser diodes. Journal of Biomedical Optics, 22(7), 075001. doi:10.1117/1.jbo.22.7.075001 es_ES
dc.description.references Erfanzadeh, M., Kumavor, P. D., & Zhu, Q. (2018). Laser scanning laser diode photoacoustic microscopy system. Photoacoustics, 9, 1-9. doi:10.1016/j.pacs.2017.10.001 es_ES
dc.description.references Zeng, L., Piao, Z., Huang, S., Jia, W., & Chen, Z. (2015). Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation. Optics Express, 23(24), 31026. doi:10.1364/oe.23.031026 es_ES
dc.description.references Hariri, A., Lemaster, J., Wang, J., Jeevarathinam, A. S., Chao, D. L., & Jokerst, J. V. (2018). The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging. Photoacoustics, 9, 10-20. doi:10.1016/j.pacs.2017.11.001 es_ES
dc.description.references Erfanzadeh, M., & Zhu, Q. (2019). Photoacoustic imaging with low-cost sources; A review. Photoacoustics, 14, 1-11. doi:10.1016/j.pacs.2019.01.004 es_ES
dc.description.references Yao, J., & Wang, L. V. (2014). Sensitivity of photoacoustic microscopy. Photoacoustics, 2(2), 87-101. doi:10.1016/j.pacs.2014.04.002 es_ES
dc.description.references Allen, T. J., Ogunlade, O., Zhang, E., & Beard, P. C. (2018). Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor. Biomedical Optics Express, 9(2), 650. doi:10.1364/boe.9.000650 es_ES
dc.description.references Song, L., Maslov, K., Shung, K. K., & Wang, L. V. (2010). Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo. Journal of Biomedical Optics, 15(2), 021303. doi:10.1117/1.3333545 es_ES
dc.description.references Song, L., Maslov, K., & Wang, L. V. (2011). Multifocal optical-resolution photoacoustic microscopy in vivo. Optics Letters, 36(7), 1236. doi:10.1364/ol.36.001236 es_ES
dc.description.references Zheng, F., Zhang, X., Chiu, C. T., Zhou, B. L., Shung, K. K., Zhang, H. F., & Jiao, S. (2012). Laser-scanning photoacoustic microscopy with ultrasonic phased array transducer. Biomedical Optics Express, 3(11), 2694. doi:10.1364/boe.3.002694 es_ES
dc.description.references Kempski, K. M., Graham, M. T., Gubbi, M. R., Palmer, T., & Lediju Bell, M. A. (2020). Application of the generalized contrast-to-noise ratio to assess photoacoustic image quality. Biomedical Optics Express, 11(7), 3684. doi:10.1364/boe.391026 es_ES
dc.description.references Cook, J. R., Bouchard, R. R., & Emelianov, S. Y. (2011). Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging. Biomedical Optics Express, 2(11), 3193. doi:10.1364/boe.2.003193 es_ES
dc.description.references Park, J., Jeon, S., Meng, J., Song, L., Lee, J. S., & Kim, C. (2016). Delay-multiply-and-sum-based synthetic aperture focusing in photoacoustic microscopy. Journal of Biomedical Optics, 21(3), 036010. doi:10.1117/1.jbo.21.3.036010 es_ES
dc.description.references Mozaffarzadeh, M., Varnosfaderani, M. H. H., Sharma, A., Pramanik, M., de Jong, N., & Verweij, M. D. (2019). Enhanced contrast acoustic‐resolution photoacoustic microscopy using double‐stage delay‐multiply‐and‐sum beamformer for vasculature imaging. Journal of Biophotonics, 12(11). doi:10.1002/jbio.201900133 es_ES
dc.description.references Matrone, G., Ramalli, A., Tortoli, P., & Magenes, G. (2018). Experimental evaluation of ultrasound higher-order harmonic imaging with Filtered-Delay Multiply And Sum (F-DMAS) non-linear beamforming. Ultrasonics, 86, 59-68. doi:10.1016/j.ultras.2018.01.002 es_ES
dc.description.references Paridar, R., Mozaffarzadeh, M., Periyasamy, V., Pramanik, M., Mehrmohammadi, M., & Orooji, M. (2019). Sparsity-based beamforming to enhance two-dimensional linear-array photoacoustic tomography. Ultrasonics, 96, 55-63. doi:10.1016/j.ultras.2019.03.010 es_ES
dc.description.references Shamekhi, S., Periyasamy, V., Pramanik, M., Mehrmohammadi, M., & Mohammadzadeh Asl, B. (2020). Eigenspace-based minimum variance beamformer combined with sign coherence factor: Application to linear-array photoacoustic imaging. Ultrasonics, 108, 106174. doi:10.1016/j.ultras.2020.106174 es_ES
dc.description.references Deng, Z., Yang, X., Gong, H., & Luo, Q. (2012). Adaptive synthetic-aperture focusing technique for microvasculature imaging using photoacoustic microscopy. Optics Express, 20(7), 7555. doi:10.1364/oe.20.007555 es_ES
dc.description.references Nakahata, K., Karakawa, K., Ogi, K., Mizukami, K., Ohira, K., Maruyama, M., … Shiina, T. (2019). Three-dimensional SAFT imaging for anisotropic materials using photoacoustic microscopy. Ultrasonics, 98, 82-87. doi:10.1016/j.ultras.2019.05.006 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem