Mostrar el registro sencillo del ítem
dc.contributor.author | Cebrecos, Alejandro | es_ES |
dc.contributor.author | García-Garrigós, J. J. | es_ES |
dc.contributor.author | Descals, A. | es_ES |
dc.contributor.author | Jimenez, Noe | es_ES |
dc.contributor.author | Benlloch Baviera, Jose María | es_ES |
dc.contributor.author | Camarena Femenia, Francisco | es_ES |
dc.date.accessioned | 2021-03-23T04:31:30Z | |
dc.date.available | 2021-03-23T04:31:30Z | |
dc.date.issued | 2021 | es_ES |
dc.identifier.issn | 0041-624X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/164058 | |
dc.description.abstract | [EN] Beamforming enhances the performance of array-based photoacoustic microscopy (PAM) systems for large-area scan. In this study, we quantify the imaging performance of a large field-of-view optical-resolution photoacoustic-microscopy system using an phased-array detector. The system combines a low-cost pulsed-laser diode with a 128-element linear ultrasound probe. Signal-to-noise ratio (SNR) and generalized contrast-to-noise ratio (gCNR) are quantified using the phased-array detector and applying three beamforming strategies: a no-beamforming method equivalent to a single-element flat transducer, a fixed focus beamforming method that mimics a single-element focused transducer, and a dynamic focus beamforming using a delay-and-sum (DAS) algorithm. The imaging capabilities of the system are demonstrated generating high-resolution images of tissue-mimicking phantoms containing sub-millimetre ink tubes and an ex vivo rabbit¿s ear. The results show that dynamic focus DAS beamforming increases and homogenizes SNR along 1-cm2 images, reaching values up to 15 dB compared to an unfocused detector and up to 30 dB compared to out-of-focus regions of the fixed focus configuration. Moreover, the obtained values of gCNR using the DAS beamformer indicate an excellent target visibility, both on phantoms and ex vivo. This strategy makes it possible to scan larger surfaces compared to standard configurations using single-element detectors, paving the way for advanced array-based PAM systems. | es_ES |
dc.description.sponsorship | This research has been supported by the Spanish Ministry of Science, Innovation and Universities through grant "Juan de la Cierva - Incorporación" (IJC2018-037897-I), and program "Proyectos I+D+i 2019, Spain" (PID2019-111436RB-C22), by Programa Operativo Empleo Juvenil, Spain 2014-2020 (MIN19-VAL-I3M-004), and by the Agència Valenciana de la Innovació, Spain through grant INNCON00/2020/009. Action co-financed by the European Union through the Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) of the Comunitat Valenciana 2014-2020 (IDIFEDER/2018/022). A.C. received financial support from Generalitat Valenciana, Spain and Universitat Politècnica de València, Spain through the grants APOSTD/2018/229 and program PAID-10-19, respectively. A.D. received support from Generalitat Valenciana, Spain through grant GJIDI/2018/A/249. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Ultrasonics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Photoacoustic imaging | es_ES |
dc.subject | OR-PAM | es_ES |
dc.subject | Array-based | es_ES |
dc.subject | DAS beamforming | es_ES |
dc.subject | Large-area scan | es_ES |
dc.subject | Pulsed laser diode | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Beamforming for large-area scan and improved SNR in array-based photoacoustic microscopy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ultras.2020.106317 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AVI//INNCON%2F2020%2F009/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F229/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ESF//MIN19-VAL-I3M-004/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F108/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F022/ES/EQUIPOS PARA TECNICAS MIXTAS ELECTROMAGNETICAS-ULTRASONICAS PARA IMAGEN MEDICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GJIDI%2F2018%2FA%2F249/ES/AYUDA GARANTIA JUVENIL GVA-TECNOLOGIA ULTRASONICA PARA APLICACIONES MEDICAS E INDUSTRIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AVI//INNCON00%2F18%2F9/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-10-19/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//IJC2018-037897-I/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111436RB-C22/ES/NEW TECHNIQUES FOR MULTIMODAL MOLECULAR ELASTOGRAPHIC IMAGING/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Cebrecos, A.; García-Garrigós, JJ.; Descals, A.; Jimenez, N.; Benlloch Baviera, JM.; Camarena Femenia, F. (2021). Beamforming for large-area scan and improved SNR in array-based photoacoustic microscopy. Ultrasonics. 111:1-8. https://doi.org/10.1016/j.ultras.2020.106317 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ultras.2020.106317 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 111 | es_ES |
dc.identifier.pmid | 33310407 | es_ES |
dc.relation.pasarela | S\426604 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Agència Valenciana de la Innovació | es_ES |
dc.description.references | Yao, J., & Wang, L. V. (2013). Photoacoustic microscopy. Laser & Photonics Reviews, 7(5), 758-778. doi:10.1002/lpor.201200060 | es_ES |
dc.description.references | Jeon, S., Kim, J., Lee, D., Baik, J. W., & Kim, C. (2019). Review on practical photoacoustic microscopy. Photoacoustics, 15, 100141. doi:10.1016/j.pacs.2019.100141 | es_ES |
dc.description.references | Beard, P. (2011). Biomedical photoacoustic imaging. Interface Focus, 1(4), 602-631. doi:10.1098/rsfs.2011.0028 | es_ES |
dc.description.references | Maslov, K., Zhang, H. F., Hu, S., & Wang, L. V. (2008). Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Optics Letters, 33(9), 929. doi:10.1364/ol.33.000929 | es_ES |
dc.description.references | Maslov, K., Stoica, G., & Wang, L. V. (2005). In vivo dark-field reflection-mode photoacoustic microscopy. Optics Letters, 30(6), 625. doi:10.1364/ol.30.000625 | es_ES |
dc.description.references | Wang, L. V., & Yao, J. (2016). A practical guide to photoacoustic tomography in the life sciences. Nature Methods, 13(8), 627-638. doi:10.1038/nmeth.3925 | es_ES |
dc.description.references | Zhang, C., Maslov, K., & Wang, L. V. (2010). Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Optics Letters, 35(19), 3195. doi:10.1364/ol.35.003195 | es_ES |
dc.description.references | Li, M.-L., Wang, J. C., Schwartz, J. A., Gill-Sharp, K. L., Stoica, G., & Wang, L. V. (2009). In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. Journal of Biomedical Optics, 14(1), 010507. doi:10.1117/1.3081556 | es_ES |
dc.description.references | Zhong, H., Duan, T., Lan, H., Zhou, M., & Gao, F. (2018). Review of Low-Cost Photoacoustic Sensing and Imaging Based on Laser Diode and Light-Emitting Diode. Sensors, 18(7), 2264. doi:10.3390/s18072264 | es_ES |
dc.description.references | Allen, T. J., & Beard, P. C. (2006). Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging. Optics Letters, 31(23), 3462. doi:10.1364/ol.31.003462 | es_ES |
dc.description.references | Zeng, L., Liu, G., Yang, D., & Ji, X. (2013). Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation. Applied Physics Letters, 102(5), 053704. doi:10.1063/1.4791566 | es_ES |
dc.description.references | Wang, T., Nandy, S., Salehi, H. S., Kumavor, P. D., & Zhu, Q. (2014). A low-cost photoacoustic microscopy system with a laser diode excitation. Biomedical Optics Express, 5(9), 3053. doi:10.1364/boe.5.003053 | es_ES |
dc.description.references | Zeng, L., Liu, G., Yang, D., & Ji, X. (2014). Cost-efficient laser-diode-induced optical-resolution photoacoustic microscopy for two-dimensional/three-dimensional biomedical imaging. Journal of Biomedical Optics, 19(7), 076017. doi:10.1117/1.jbo.19.7.076017 | es_ES |
dc.description.references | Hariri, A., Fatima, A., Mohammadian, N., Mahmoodkalayeh, S., Ansari, M. A., Bely, N., & Avanaki, M. R. N. (2017). Development of low-cost photoacoustic imaging systems using very low-energy pulsed laser diodes. Journal of Biomedical Optics, 22(7), 075001. doi:10.1117/1.jbo.22.7.075001 | es_ES |
dc.description.references | Erfanzadeh, M., Kumavor, P. D., & Zhu, Q. (2018). Laser scanning laser diode photoacoustic microscopy system. Photoacoustics, 9, 1-9. doi:10.1016/j.pacs.2017.10.001 | es_ES |
dc.description.references | Zeng, L., Piao, Z., Huang, S., Jia, W., & Chen, Z. (2015). Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation. Optics Express, 23(24), 31026. doi:10.1364/oe.23.031026 | es_ES |
dc.description.references | Hariri, A., Lemaster, J., Wang, J., Jeevarathinam, A. S., Chao, D. L., & Jokerst, J. V. (2018). The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging. Photoacoustics, 9, 10-20. doi:10.1016/j.pacs.2017.11.001 | es_ES |
dc.description.references | Erfanzadeh, M., & Zhu, Q. (2019). Photoacoustic imaging with low-cost sources; A review. Photoacoustics, 14, 1-11. doi:10.1016/j.pacs.2019.01.004 | es_ES |
dc.description.references | Yao, J., & Wang, L. V. (2014). Sensitivity of photoacoustic microscopy. Photoacoustics, 2(2), 87-101. doi:10.1016/j.pacs.2014.04.002 | es_ES |
dc.description.references | Allen, T. J., Ogunlade, O., Zhang, E., & Beard, P. C. (2018). Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor. Biomedical Optics Express, 9(2), 650. doi:10.1364/boe.9.000650 | es_ES |
dc.description.references | Song, L., Maslov, K., Shung, K. K., & Wang, L. V. (2010). Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo. Journal of Biomedical Optics, 15(2), 021303. doi:10.1117/1.3333545 | es_ES |
dc.description.references | Song, L., Maslov, K., & Wang, L. V. (2011). Multifocal optical-resolution photoacoustic microscopy in vivo. Optics Letters, 36(7), 1236. doi:10.1364/ol.36.001236 | es_ES |
dc.description.references | Zheng, F., Zhang, X., Chiu, C. T., Zhou, B. L., Shung, K. K., Zhang, H. F., & Jiao, S. (2012). Laser-scanning photoacoustic microscopy with ultrasonic phased array transducer. Biomedical Optics Express, 3(11), 2694. doi:10.1364/boe.3.002694 | es_ES |
dc.description.references | Kempski, K. M., Graham, M. T., Gubbi, M. R., Palmer, T., & Lediju Bell, M. A. (2020). Application of the generalized contrast-to-noise ratio to assess photoacoustic image quality. Biomedical Optics Express, 11(7), 3684. doi:10.1364/boe.391026 | es_ES |
dc.description.references | Cook, J. R., Bouchard, R. R., & Emelianov, S. Y. (2011). Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging. Biomedical Optics Express, 2(11), 3193. doi:10.1364/boe.2.003193 | es_ES |
dc.description.references | Park, J., Jeon, S., Meng, J., Song, L., Lee, J. S., & Kim, C. (2016). Delay-multiply-and-sum-based synthetic aperture focusing in photoacoustic microscopy. Journal of Biomedical Optics, 21(3), 036010. doi:10.1117/1.jbo.21.3.036010 | es_ES |
dc.description.references | Mozaffarzadeh, M., Varnosfaderani, M. H. H., Sharma, A., Pramanik, M., de Jong, N., & Verweij, M. D. (2019). Enhanced contrast acoustic‐resolution photoacoustic microscopy using double‐stage delay‐multiply‐and‐sum beamformer for vasculature imaging. Journal of Biophotonics, 12(11). doi:10.1002/jbio.201900133 | es_ES |
dc.description.references | Matrone, G., Ramalli, A., Tortoli, P., & Magenes, G. (2018). Experimental evaluation of ultrasound higher-order harmonic imaging with Filtered-Delay Multiply And Sum (F-DMAS) non-linear beamforming. Ultrasonics, 86, 59-68. doi:10.1016/j.ultras.2018.01.002 | es_ES |
dc.description.references | Paridar, R., Mozaffarzadeh, M., Periyasamy, V., Pramanik, M., Mehrmohammadi, M., & Orooji, M. (2019). Sparsity-based beamforming to enhance two-dimensional linear-array photoacoustic tomography. Ultrasonics, 96, 55-63. doi:10.1016/j.ultras.2019.03.010 | es_ES |
dc.description.references | Shamekhi, S., Periyasamy, V., Pramanik, M., Mehrmohammadi, M., & Mohammadzadeh Asl, B. (2020). Eigenspace-based minimum variance beamformer combined with sign coherence factor: Application to linear-array photoacoustic imaging. Ultrasonics, 108, 106174. doi:10.1016/j.ultras.2020.106174 | es_ES |
dc.description.references | Deng, Z., Yang, X., Gong, H., & Luo, Q. (2012). Adaptive synthetic-aperture focusing technique for microvasculature imaging using photoacoustic microscopy. Optics Express, 20(7), 7555. doi:10.1364/oe.20.007555 | es_ES |
dc.description.references | Nakahata, K., Karakawa, K., Ogi, K., Mizukami, K., Ohira, K., Maruyama, M., … Shiina, T. (2019). Three-dimensional SAFT imaging for anisotropic materials using photoacoustic microscopy. Ultrasonics, 98, 82-87. doi:10.1016/j.ultras.2019.05.006 | es_ES |