Agency for Toxic Substances and Disease Registry Toxicological Profile for Benzene US Department of Health and Human Services Public Health Service ATSDR Atlanta GA 2007.
Gustafson, P., Barregard, L., Strandberg, B., & Sällsten, G. (2007). The impact of domestic wood burning on personal, indoor and outdoor levels of 1,3-butadiene, benzene, formaldehyde and acetaldehyde. J. Environ. Monit., 9(1), 23-32. doi:10.1039/b614142k
Duarte-Davidson, R. (2001). Benzene in the environment: an assessment of the potential risks to the health of the population. Occupational and Environmental Medicine, 58(1), 2-13. doi:10.1136/oem.58.1.2
[+]
Agency for Toxic Substances and Disease Registry Toxicological Profile for Benzene US Department of Health and Human Services Public Health Service ATSDR Atlanta GA 2007.
Gustafson, P., Barregard, L., Strandberg, B., & Sällsten, G. (2007). The impact of domestic wood burning on personal, indoor and outdoor levels of 1,3-butadiene, benzene, formaldehyde and acetaldehyde. J. Environ. Monit., 9(1), 23-32. doi:10.1039/b614142k
Duarte-Davidson, R. (2001). Benzene in the environment: an assessment of the potential risks to the health of the population. Occupational and Environmental Medicine, 58(1), 2-13. doi:10.1136/oem.58.1.2
Toxicological Profile for Benzene US Department of Health and Human Services Agency for Toxic Substances and Disease Registry Atlanta GA 2007.
Snyder, R. (2000). OVERVIEW OF THE TOXICOLOGY OF BENZENE. Journal of Toxicology and Environmental Health, Part A, 61(5-6), 339-346. doi:10.1080/00984100050166334
Weisel, C. P. (2010). Benzene exposure: An overview of monitoring methods and their findings. Chemico-Biological Interactions, 184(1-2), 58-66. doi:10.1016/j.cbi.2009.12.030
Mudiam, M. K. R., Chauhan, A., Singh, K. P., Gupta, S. K., Jain, R., Ch, R., & Murthy, R. C. (2012). Determination of t,t-muconic acid in urine samples using a molecular imprinted polymer combined with simultaneous ethyl chloroformate derivatization and pre-concentration by dispersive liquid–liquid microextraction. Analytical and Bioanalytical Chemistry, 405(1), 341-349. doi:10.1007/s00216-012-6474-9
KOH, D.-H., LEE, M.-Y., CHUNG, E.-K., JANG, J.-K., & PARK, D.-U. (2018). Comparison of personal air benzene and urine t,t-muconic acid as a benzene exposure surrogate during turnaround maintenance in petrochemical plants. Industrial Health, 56(4), 346-355. doi:10.2486/indhealth.2017-0225
LARC Benzene 2012.
Wiwanitkit, V., Soogarun, S., & Suwansaksri, J. (2004). Urine Phenol and Myeloperoxidase Index: An Observation in Benzene Exposed Subjects. Leukemia & Lymphoma, 45(8), 1643-1645. doi:10.1080/10428190410001693515
Lovreglio, P., D’Errico, M. N., Fustinoni, S., Drago, I., Barbieri, A., Sabatini, L., … Soleo, L. (2011). Biomarkers of internal dose for the assessment of environmental exposure to benzene. Journal of Environmental Monitoring, 13(10), 2921. doi:10.1039/c1em10512d
Scherer, G., Renner, T., & Meger, M. (1998). Analysis and evaluation of trans,trans-muconic acid as a biomarker for benzene exposure. Journal of Chromatography B: Biomedical Sciences and Applications, 717(1-2), 179-199. doi:10.1016/s0378-4347(98)00065-6
American Conference of Governmental Industrial Hygienists. Threshold Limit Values and Biological Exposure Indices ACGIH Cincinnati 2010.
Waidyanatha, S., Rothman, N., Fustinoni, S., Smith, M. T., Hayes, R. B., Bechtold, W., … Rappaport, S. M. (2001). Urinary benzene as a biomarker of exposure among occupationally exposed and unexposed subjects. Carcinogenesis, 22(2), 279-286. doi:10.1093/carcin/22.2.279
Jamaleddin Shahtaheri, S., Ghamari, F., Golbabaei, F., Rahimi-Froushani, A., & Abdollahi, M. (2005). Sample Preparation Followed by High Performance Liquid Chromatographic (HPLC) Analysis for Monitoring Muconic Acid as a Biomarker of Occupational Exposure to Benzene. International Journal of Occupational Safety and Ergonomics, 11(4), 377-388. doi:10.1080/10803548.2005.11076658
Soleimani, E., Bahrami, A., Afkhami, A., & Shahna, F. G. (2017). Determination of urinary trans,trans-muconic acid using molecularly imprinted polymer in microextraction by packed sorbent followed by liquid chromatography with ultraviolet detection. Journal of Chromatography B, 1061-1062, 65-71. doi:10.1016/j.jchromb.2017.07.008
Rismanchian, M., Ebrahim, K., & Ordudari, Z. (2019). Development of a simple and rapid method for determination of trans, trans-Muconic Acid in human urine using PDLLME preconcentration and HPLC–UV detection. Chemical Papers, 73(10), 2485-2492. doi:10.1007/s11696-019-00800-2
Soleimani, E., Bahrami, A., Afkhami, A., & Shahna, F. G. (2017). Rapid analysis of trans,trans-muconic acid in urine using microextraction by packed sorbent. Toxicology and Environmental Health Sciences, 9(5), 317-324. doi:10.1007/s13530-017-0337-x
Moein, M. M., Abdel-Rehim, A., & Abdel-Rehim, M. (2015). Microextraction by packed sorbent (MEPS). TrAC Trends in Analytical Chemistry, 67, 34-44. doi:10.1016/j.trac.2014.12.003
TRANFO, G., PACI, E., SISTO, R., & PIGINI, D. (2008). Validation of an HPLC/MS/MS method with isotopic dilution for quantitative determination of trans,trans-muconic acid in urine samples of workers exposed to low benzene concentrations. Journal of Chromatography B, 867(1), 26-31. doi:10.1016/j.jchromb.2008.03.004
Vieira, A. C., Zampieri, R. A., de Siqueira, M. E. P. B., Martins, I., & Figueiredo, E. C. (2012). Molecularly imprinted solid-phase extraction and high-performance liquid chromatography with ultraviolet detection for the determination of urinary trans,trans-muconic acid: a comparison with ionic exchange extraction. The Analyst, 137(10), 2462. doi:10.1039/c2an16215f
Ghamari, F., Bahrami, A., Yamini, Y., Shahna, F. G., & Moghimbeigi, A. (2016). Development of Hollow-Fiber Liquid-Phase Microextraction Method for Determination of Urinary trans, trans-Muconic Acid as a Biomarker of Benzene Exposure. Analytical Chemistry Insights, 11, ACI.S40177. doi:10.4137/aci.s40177
Gagné, S. (2012). Determination oftrans,trans-muconic acid in workers’ urine through ultra-performance liquid chromatography coupled to tandem mass spectrometry. Biomedical Chromatography, 27(5), 664-668. doi:10.1002/bmc.2844
Mateos, R., Vera-López, S., Saz, M., Díez-Pascual, A. M., & San Andrés, M. P. (2019). Graphene/sepiolite mixtures as dispersive solid-phase extraction sorbents for the anaysis of polycyclic aromatic hydrocarbons in wastewater using surfactant aqueous solutions for desorption. Journal of Chromatography A, 1596, 30-40. doi:10.1016/j.chroma.2019.03.004
Ji, Q., Qiao, X., Liu, X., Jia, H., Yu, J.-S., & Ariga, K. (2018). Enhanced Adsorption Selectivity of Aromatic Vapors in Carbon Capsule Film by Control of Surface Surfactants on Carbon Capsule. Bulletin of the Chemical Society of Japan, 91(3), 391-397. doi:10.1246/bcsj.20170357
Alibrandi, G., Amendola, V., Bergamaschi, G., Fabbrizzi, L., & Licchelli, M. (2015). Bistren cryptands and cryptates: versatile receptors for anion inclusion and recognition in water. Organic & Biomolecular Chemistry, 13(12), 3510-3524. doi:10.1039/c4ob02618g
Boiocchi, M., Bonizzoni, M., Fabbrizzi, L., Piovani, G., & Taglietti, A. (2004). A Dimetallic Cage with a Long Ellipsoidal Cavity for the Fluorescent Detection of Dicarboxylate Anions in Water. Angewandte Chemie International Edition, 43(29), 3847-3852. doi:10.1002/anie.200460036
Boiocchi, M., Bonizzoni, M., Fabbrizzi, L., Piovani, G., & Taglietti, A. (2004). A Dimetallic Cage with a Long Ellipsoidal Cavity for the Fluorescent Detection of Dicarboxylate Anions in Water. Angewandte Chemie, 116(29), 3935-3940. doi:10.1002/ange.200460036
Pallavicini, P., Amendola, V., Bergamaschi, G., Cabrini, E., Dacarro, G., Rossi, N., & Taglietti, A. (2016). A bistren cryptand with a remote thioether function: Cu(ii) complexation in solution and on the surface of gold nanostars. New Journal of Chemistry, 40(7), 5722-5730. doi:10.1039/c5nj03175c
Amendola, V., Bergamaschi, G., & Miljkovic, A. (2017). Azacryptands as molecular cages for anions and metal ions. Supramolecular Chemistry, 30(4), 236-242. doi:10.1080/10610278.2017.1339885
Merli, D., La Cognata, S., Balduzzi, F., Miljkovic, A., Toma, L., & Amendola, V. (2018). A smart supramolecular device for the detection of t,t-muconic acid in urine. New Journal of Chemistry, 42(18), 15460-15465. doi:10.1039/c8nj02156b
Coll, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703d
Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090
Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210k
Mondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148
Sayed, S. E., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2017). Capped Mesoporous Silica Nanoparticles for the Selective and Sensitive Detection of Cyanide. Chemistry - An Asian Journal, 12(20), 2670-2674. doi:10.1002/asia.201701130
El Sayed, S., Milani, M., Milanese, C., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2016). Anions as Triggers in Controlled Release Protocols from Mesoporous Silica Nanoparticles Functionalized with Macrocyclic Copper(II) Complexes. Chemistry - A European Journal, 22(39), 13935-13945. doi:10.1002/chem.201601024
El Sayed, S., Milani, M., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2015). Hexametaphosphate-Capped Silica Mesoporous Nanoparticles Containing CuIIComplexes for the Selective and Sensitive Optical Detection of Hydrogen Sulfide in Water. Chemistry - A European Journal, 21(19), 7002-7006. doi:10.1002/chem.201500360
El Sayed, S., Giménez, C., Aznar, E., Martínez-Máñez, R., Sancenón, F., & Licchelli, M. (2015). Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains. Organic & Biomolecular Chemistry, 13(4), 1017-1021. doi:10.1039/c4ob02083a
García‐Fernández, A., Aznar, E., Martínez‐Máñez, R., & Sancenón, F. (2019). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small, 16(3), 1902242. doi:10.1002/smll.201902242
Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j
Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0
Wu, S.-H., Mou, C.-Y., & Lin, H.-P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42(9), 3862. doi:10.1039/c3cs35405a
[-]