- -

A Nanoprobe Based on Gated Mesoporous Silica Nanoparticles for The Selective and Sensitive Detection of Benzene Metabolite t,t-Muconic Acid in Urine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Nanoprobe Based on Gated Mesoporous Silica Nanoparticles for The Selective and Sensitive Detection of Benzene Metabolite t,t-Muconic Acid in Urine

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Domínguez-Rodríguez, Marcia es_ES
dc.contributor.author Blandez, Juan F. es_ES
dc.contributor.author Lozano-Torres, Beatriz es_ES
dc.contributor.author De La Torre-Paredes, Cristina es_ES
dc.contributor.author Licchelli, Maurizio es_ES
dc.contributor.author Mangano, Carlo es_ES
dc.contributor.author Amendola, Valeria es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.date.accessioned 2021-03-23T04:31:36Z
dc.date.available 2021-03-23T04:31:36Z
dc.date.issued 2021-01-18 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164060
dc.description This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Benzene is a highly toxic aromatic hydrocarbon. Inhaling benzene can cause dizziness, vertigo, headaches, aplasia, mutations and, in the most extreme cases, cancer. Trans,trans-muconic acid (t,t-MA) is one of the metabolization products of benzene. Although different analytical methods have been reported for the determination of t,t-MA, these are often expensive, require trained personnel, are not suitable for on-site measurements, and use hazardous organic solvents. For these reasons, the development of reliable, selective and sensitive methods for rapid and in situ detection of t,t-MA are of importance. Addressing this challenge, a nanodevice for the selective and sensitive quantification of t,t-MA in urine is reported. The nanodevice used is achieved using mesoporous silica nanoparticles loaded with a dye reporter and capped with a dicopper(II) azacryptand. Pore opening and payload release is induced rapidly (10 min) and selectively with t,t-MA in urine, using a simple fluorimeter without sample pretreatment. es_ES
dc.description.sponsorship The authors thank the Spanish Government (RTI2018-100910-B-C41) and the Generalitat Valenciana (PROMETEO 2018/024) for support. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Benzene es_ES
dc.subject Hybrid organic-inorganic materials es_ES
dc.subject Mesoporous materials es_ES
dc.subject Molecular recognition es_ES
dc.subject Nanoprobe es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.title A Nanoprobe Based on Gated Mesoporous Silica Nanoparticles for The Selective and Sensitive Detection of Benzene Metabolite t,t-Muconic Acid in Urine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.202004272 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Domínguez-Rodríguez, M.; Blandez, JF.; Lozano-Torres, B.; De La Torre-Paredes, C.; Licchelli, M.; Mangano, C.; Amendola, V.... (2021). A Nanoprobe Based on Gated Mesoporous Silica Nanoparticles for The Selective and Sensitive Detection of Benzene Metabolite t,t-Muconic Acid in Urine. Chemistry - A European Journal. 27(4):1306-1310. https://doi.org/10.1002/chem.202004272 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.202004272 es_ES
dc.description.upvformatpinicio 1306 es_ES
dc.description.upvformatpfin 1310 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\427725 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Agency for Toxic Substances and Disease Registry Toxicological Profile for Benzene US Department of Health and Human Services Public Health Service ATSDR Atlanta GA 2007. es_ES
dc.description.references Gustafson, P., Barregard, L., Strandberg, B., & Sällsten, G. (2007). The impact of domestic wood burning on personal, indoor and outdoor levels of 1,3-butadiene, benzene, formaldehyde and acetaldehyde. J. Environ. Monit., 9(1), 23-32. doi:10.1039/b614142k es_ES
dc.description.references Duarte-Davidson, R. (2001). Benzene in the environment: an assessment of the potential risks to the health of the population. Occupational and Environmental Medicine, 58(1), 2-13. doi:10.1136/oem.58.1.2 es_ES
dc.description.references Toxicological Profile for Benzene US Department of Health and Human Services Agency for Toxic Substances and Disease Registry Atlanta GA 2007. es_ES
dc.description.references Snyder, R. (2000). OVERVIEW OF THE TOXICOLOGY OF BENZENE. Journal of Toxicology and Environmental Health, Part A, 61(5-6), 339-346. doi:10.1080/00984100050166334 es_ES
dc.description.references Weisel, C. P. (2010). Benzene exposure: An overview of monitoring methods and their findings. Chemico-Biological Interactions, 184(1-2), 58-66. doi:10.1016/j.cbi.2009.12.030 es_ES
dc.description.references Mudiam, M. K. R., Chauhan, A., Singh, K. P., Gupta, S. K., Jain, R., Ch, R., & Murthy, R. C. (2012). Determination of t,t-muconic acid in urine samples using a molecular imprinted polymer combined with simultaneous ethyl chloroformate derivatization and pre-concentration by dispersive liquid–liquid microextraction. Analytical and Bioanalytical Chemistry, 405(1), 341-349. doi:10.1007/s00216-012-6474-9 es_ES
dc.description.references KOH, D.-H., LEE, M.-Y., CHUNG, E.-K., JANG, J.-K., & PARK, D.-U. (2018). Comparison of personal air benzene and urine t,t-muconic acid as a benzene exposure surrogate during turnaround maintenance in petrochemical plants. Industrial Health, 56(4), 346-355. doi:10.2486/indhealth.2017-0225 es_ES
dc.description.references LARC Benzene 2012. es_ES
dc.description.references Wiwanitkit, V., Soogarun, S., & Suwansaksri, J. (2004). Urine Phenol and Myeloperoxidase Index: An Observation in Benzene Exposed Subjects. Leukemia & Lymphoma, 45(8), 1643-1645. doi:10.1080/10428190410001693515 es_ES
dc.description.references Lovreglio, P., D’Errico, M. N., Fustinoni, S., Drago, I., Barbieri, A., Sabatini, L., … Soleo, L. (2011). Biomarkers of internal dose for the assessment of environmental exposure to benzene. Journal of Environmental Monitoring, 13(10), 2921. doi:10.1039/c1em10512d es_ES
dc.description.references Scherer, G., Renner, T., & Meger, M. (1998). Analysis and evaluation of trans,trans-muconic acid as a biomarker for benzene exposure. Journal of Chromatography B: Biomedical Sciences and Applications, 717(1-2), 179-199. doi:10.1016/s0378-4347(98)00065-6 es_ES
dc.description.references American Conference of Governmental Industrial Hygienists. Threshold Limit Values and Biological Exposure Indices ACGIH Cincinnati 2010. es_ES
dc.description.references Waidyanatha, S., Rothman, N., Fustinoni, S., Smith, M. T., Hayes, R. B., Bechtold, W., … Rappaport, S. M. (2001). Urinary benzene as a biomarker of exposure among occupationally exposed and unexposed subjects. Carcinogenesis, 22(2), 279-286. doi:10.1093/carcin/22.2.279 es_ES
dc.description.references Jamaleddin Shahtaheri, S., Ghamari, F., Golbabaei, F., Rahimi-Froushani, A., & Abdollahi, M. (2005). Sample Preparation Followed by High Performance Liquid Chromatographic (HPLC) Analysis for Monitoring Muconic Acid as a Biomarker of Occupational Exposure to Benzene. International Journal of Occupational Safety and Ergonomics, 11(4), 377-388. doi:10.1080/10803548.2005.11076658 es_ES
dc.description.references Soleimani, E., Bahrami, A., Afkhami, A., & Shahna, F. G. (2017). Determination of urinary trans,trans-muconic acid using molecularly imprinted polymer in microextraction by packed sorbent followed by liquid chromatography with ultraviolet detection. Journal of Chromatography B, 1061-1062, 65-71. doi:10.1016/j.jchromb.2017.07.008 es_ES
dc.description.references Rismanchian, M., Ebrahim, K., & Ordudari, Z. (2019). Development of a simple and rapid method for determination of trans, trans-Muconic Acid in human urine using PDLLME preconcentration and HPLC–UV detection. Chemical Papers, 73(10), 2485-2492. doi:10.1007/s11696-019-00800-2 es_ES
dc.description.references Soleimani, E., Bahrami, A., Afkhami, A., & Shahna, F. G. (2017). Rapid analysis of trans,trans-muconic acid in urine using microextraction by packed sorbent. Toxicology and Environmental Health Sciences, 9(5), 317-324. doi:10.1007/s13530-017-0337-x es_ES
dc.description.references Moein, M. M., Abdel-Rehim, A., & Abdel-Rehim, M. (2015). Microextraction by packed sorbent (MEPS). TrAC Trends in Analytical Chemistry, 67, 34-44. doi:10.1016/j.trac.2014.12.003 es_ES
dc.description.references TRANFO, G., PACI, E., SISTO, R., & PIGINI, D. (2008). Validation of an HPLC/MS/MS method with isotopic dilution for quantitative determination of trans,trans-muconic acid in urine samples of workers exposed to low benzene concentrations. Journal of Chromatography B, 867(1), 26-31. doi:10.1016/j.jchromb.2008.03.004 es_ES
dc.description.references Vieira, A. C., Zampieri, R. A., de Siqueira, M. E. P. B., Martins, I., & Figueiredo, E. C. (2012). Molecularly imprinted solid-phase extraction and high-performance liquid chromatography with ultraviolet detection for the determination of urinary trans,trans-muconic acid: a comparison with ionic exchange extraction. The Analyst, 137(10), 2462. doi:10.1039/c2an16215f es_ES
dc.description.references Ghamari, F., Bahrami, A., Yamini, Y., Shahna, F. G., & Moghimbeigi, A. (2016). Development of Hollow-Fiber Liquid-Phase Microextraction Method for Determination of Urinary trans, trans-Muconic Acid as a Biomarker of Benzene Exposure. Analytical Chemistry Insights, 11, ACI.S40177. doi:10.4137/aci.s40177 es_ES
dc.description.references Gagné, S. (2012). Determination oftrans,trans-muconic acid in workers’ urine through ultra-performance liquid chromatography coupled to tandem mass spectrometry. Biomedical Chromatography, 27(5), 664-668. doi:10.1002/bmc.2844 es_ES
dc.description.references Mateos, R., Vera-López, S., Saz, M., Díez-Pascual, A. M., & San Andrés, M. P. (2019). Graphene/sepiolite mixtures as dispersive solid-phase extraction sorbents for the anaysis of polycyclic aromatic hydrocarbons in wastewater using surfactant aqueous solutions for desorption. Journal of Chromatography A, 1596, 30-40. doi:10.1016/j.chroma.2019.03.004 es_ES
dc.description.references Ji, Q., Qiao, X., Liu, X., Jia, H., Yu, J.-S., & Ariga, K. (2018). Enhanced Adsorption Selectivity of Aromatic Vapors in Carbon Capsule Film by Control of Surface Surfactants on Carbon Capsule. Bulletin of the Chemical Society of Japan, 91(3), 391-397. doi:10.1246/bcsj.20170357 es_ES
dc.description.references Alibrandi, G., Amendola, V., Bergamaschi, G., Fabbrizzi, L., & Licchelli, M. (2015). Bistren cryptands and cryptates: versatile receptors for anion inclusion and recognition in water. Organic & Biomolecular Chemistry, 13(12), 3510-3524. doi:10.1039/c4ob02618g es_ES
dc.description.references Boiocchi, M., Bonizzoni, M., Fabbrizzi, L., Piovani, G., & Taglietti, A. (2004). A Dimetallic Cage with a Long Ellipsoidal Cavity for the Fluorescent Detection of Dicarboxylate Anions in Water. Angewandte Chemie International Edition, 43(29), 3847-3852. doi:10.1002/anie.200460036 es_ES
dc.description.references Boiocchi, M., Bonizzoni, M., Fabbrizzi, L., Piovani, G., & Taglietti, A. (2004). A Dimetallic Cage with a Long Ellipsoidal Cavity for the Fluorescent Detection of Dicarboxylate Anions in Water. Angewandte Chemie, 116(29), 3935-3940. doi:10.1002/ange.200460036 es_ES
dc.description.references Pallavicini, P., Amendola, V., Bergamaschi, G., Cabrini, E., Dacarro, G., Rossi, N., & Taglietti, A. (2016). A bistren cryptand with a remote thioether function: Cu(ii) complexation in solution and on the surface of gold nanostars. New Journal of Chemistry, 40(7), 5722-5730. doi:10.1039/c5nj03175c es_ES
dc.description.references Amendola, V., Bergamaschi, G., & Miljkovic, A. (2017). Azacryptands as molecular cages for anions and metal ions. Supramolecular Chemistry, 30(4), 236-242. doi:10.1080/10610278.2017.1339885 es_ES
dc.description.references Merli, D., La Cognata, S., Balduzzi, F., Miljkovic, A., Toma, L., & Amendola, V. (2018). A smart supramolecular device for the detection of t,t-muconic acid in urine. New Journal of Chemistry, 42(18), 15460-15465. doi:10.1039/c8nj02156b es_ES
dc.description.references Coll, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703d es_ES
dc.description.references Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090 es_ES
dc.description.references Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210k es_ES
dc.description.references Mondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148 es_ES
dc.description.references Sayed, S. E., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2017). Capped Mesoporous Silica Nanoparticles for the Selective and Sensitive Detection of Cyanide. Chemistry - An Asian Journal, 12(20), 2670-2674. doi:10.1002/asia.201701130 es_ES
dc.description.references El Sayed, S., Milani, M., Milanese, C., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2016). Anions as Triggers in Controlled Release Protocols from Mesoporous Silica Nanoparticles Functionalized with Macrocyclic Copper(II) Complexes. Chemistry - A European Journal, 22(39), 13935-13945. doi:10.1002/chem.201601024 es_ES
dc.description.references El Sayed, S., Milani, M., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2015). Hexametaphosphate-Capped Silica Mesoporous Nanoparticles Containing CuIIComplexes for the Selective and Sensitive Optical Detection of Hydrogen Sulfide in Water. Chemistry - A European Journal, 21(19), 7002-7006. doi:10.1002/chem.201500360 es_ES
dc.description.references El Sayed, S., Giménez, C., Aznar, E., Martínez-Máñez, R., Sancenón, F., & Licchelli, M. (2015). Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains. Organic & Biomolecular Chemistry, 13(4), 1017-1021. doi:10.1039/c4ob02083a es_ES
dc.description.references García‐Fernández, A., Aznar, E., Martínez‐Máñez, R., & Sancenón, F. (2019). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small, 16(3), 1902242. doi:10.1002/smll.201902242 es_ES
dc.description.references Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j es_ES
dc.description.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.description.references Wu, S.-H., Mou, C.-Y., & Lin, H.-P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42(9), 3862. doi:10.1039/c3cs35405a es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem