- -

Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the successful implementation of sustainable plastic waste management strategies

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the successful implementation of sustainable plastic waste management strategies

Show full item record

Gala, A.; Guerrero, M.; Serra Alfaro, JM. (2020). Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the successful implementation of sustainable plastic waste management strategies. Waste Management. 111:22-33. https://doi.org/10.1016/j.wasman.2020.05.019

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164159

Files in this item

Item Metadata

Title: Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the successful implementation of sustainable plastic waste management strategies
Author: Gala, Alberto Guerrero, Marta Serra Alfaro, José Manuel
Issued date:
Abstract:
[EN] The purpose of this paper is to provide a full characterization of post-consumer plastic film recovered from mixed municipal solid waste (MSW) treatment plants in Spain. Currently, this type of plastic waste is not ...[+]
Subjects: Municipal plastic waste , Sorting , Plastic waste characterization , Recycling , Circular economy
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Waste Management. (issn: 0956-053X )
DOI: 10.1016/j.wasman.2020.05.019
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.wasman.2020.05.019
Project ID:
info:eu-repo/grantAgreement/AEI//DI-16-08700/
info:eu-repo/grantAgreement/CDTI//IDI-20181081/ES/Economía circular para la valorización de los residuos plásticos urbanos/
Thanks:
The authors acknowledge the financial support of the Centre for the Development of Industrial Technology [grant number IDI - 20181081] and the Ministerio de Ciencia, Innovacion y Universidades (Spain) [grant number DI - ...[+]
Type: Artículo

References

Abraham, D., George, K. E., & Francis, D. J. (1992). Melt Viscosity and Elasticity of Low Density and Linear Low Density Polyethylene Blends. International Journal of Polymeric Materials, 18(3-4), 197-211. doi:10.1080/00914039208029321

Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, Ε. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3), 536-542. doi:10.1016/j.jhazmat.2007.06.076

AENOR (Asociación Española de Normalización y Certificación), 2005. UNE 53087 – 2:2005 Plastics and rubber. Determination of chlorine content. Part 2. Method of coulombimetry. [+]
Abraham, D., George, K. E., & Francis, D. J. (1992). Melt Viscosity and Elasticity of Low Density and Linear Low Density Polyethylene Blends. International Journal of Polymeric Materials, 18(3-4), 197-211. doi:10.1080/00914039208029321

Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, Ε. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3), 536-542. doi:10.1016/j.jhazmat.2007.06.076

AENOR (Asociación Española de Normalización y Certificación), 2005. UNE 53087 – 2:2005 Plastics and rubber. Determination of chlorine content. Part 2. Method of coulombimetry.

Al-Salem, S.M., 2019. Feedstock and optimal operation for plastics to fuel conversion in pyrolysis. In: Al-Salem, S.M. (Ed.), Plastics to Energy: Fuel, Chemicals, and Sustainability Implications. William Andrew Publishing, pp. 117–146. https://doi.org/10.1016/B978-0-12-813140-4.00005-4.

Alvarenga, L. M., Xavier, T. P., Barrozo, M. A. S., Bacelos, M. S., & Lira, T. S. (2016). Determination of activation energy of pyrolysis of carton packaging wastes and its pure components using thermogravimetry. Waste Management, 53, 68-75. doi:10.1016/j.wasman.2016.04.015

Ambrogi, V., Carfagna, C., Cerruti, P., Marturano, V., 2017. Additives in polymers. In: Jasso-Gatinel, C.F., Kenny (Eds.), Modification of polymer properties. William Andrew Publishing, pp. 87–108. https://doi.org/10.1016/B978-0-323-44353-1.00004-X.

Angyal, A., Miskolczi, N., & Bartha, L. (2007). Petrochemical feedstock by thermal cracking of plastic waste. Journal of Analytical and Applied Pyrolysis, 79(1-2), 409-414. doi:10.1016/j.jaap.2006.12.031

Argyle, M., & Bartholomew, C. (2015). Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts, 5(1), 145-269. doi:10.3390/catal5010145

ASTM International, 2017. E2550 – 17 Standard test method for thermal stability by thermogravimetry. http://doi.org/10.1520/E2550-17.

Bisinella, V., Götze, R., Conradsen, K., Damgaard, A., Christensen, T. H., & Astrup, T. F. (2017). Importance of waste composition for Life Cycle Assessment of waste management solutions. Journal of Cleaner Production, 164, 1180-1191. doi:10.1016/j.jclepro.2017.07.013

Boyard, N., Delaunay, D., 2016. Experimental determination and modeling of thermophysical properties. In: Boyard, N. (Ed.), Heat Transfer in Polymer Composite Materials: Forming Processes. John Wiley & Sons, Inc., London, Great Britain, pp. 29–76. https://doi.org/10.1002/9781119116288.ch2.

British Plastics Federation. https://www.bpf.co.uk/packaging/Default.aspx (accessed 20 September 2019).

Brydson, J.A., 1999. Relation of structure to thermal and mechanical properties. In: Brydson, J.A. (Ed.), Plastics Materials (Seven Edition). Butterworth-Heinemann, pp. 59–75. https://doi.org/10.1016/B978-075064132-6/50045-0.

CEN (European Committee for Standardization), 2006. CEN/TR 15310-3:2006 Characterization of waste – Sampling of waste materials – Part 3: Guidance on procedures for sub – sampling in the field. Work Item Number: 00292018.

CEN (European Committee for Standardization), 2011a. EN 15407:2011 Solid recovered fuels – Methods for the determination of carbon (C), hydrogen (H) and nitrogen (N) content. Work Item Number: 00343057.

CEN (European Committee for Standardization), 2011b. EN 15414 – 3:2011 Solid recovered fuels – Determination of moisture content using the oven dry method – Part 3: Moisture in general analysis sample. Work Item Number: 00343055.

CEN (European Committee for Standardization), 2011c. EN 15402:2011 Solid recovered fuels – Determination of the content of volatile matter. Work Item Number: 00343048.

CEN (European Committee for Standardization), 2011d. EN 15403:2011 Solid recovered fuels – Determination of ash content. Work Item Number: 00343049.

CEN (European Committee for Standardization), 2011e. EN 15400:2011 Solid recovered fuel – Determination of calorific value. Work Item Number: 00343046.

CEN (European Committee for Standardization), 2011f. EN 15407:2011 Solid recovered fuel – Methods for the determination of carbon (C), hydrogen (H) and nitrogen (N) content. Work Item Number: 00343057.

CEN (European Committee for Standardization), 2011g. EN 15410:2012 Solid recovered fuel – Methods for the determination of the content of major elements (Al, Ca, Fe, K, Mg, Na, P, Si, Ti). Work Item Number: 00343059.

CEN (European Committee for Standardization), 2018. EN ISO 11357-3:2018 Plastics – Differential scanning calorimetry (DSC) – Part 3: Determination of temperature and enthalpy of melting and crystallization (ISO 11357 – 3:2018). Work Item Number: 00249987.

Cross, M. M. (1965). Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. Journal of Colloid Science, 20(5), 417-437. doi:10.1016/0095-8522(65)90022-x

Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., & Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 3, 171-197. doi:10.1016/j.tsep.2017.06.003

Dahlbo, H., Poliakova, V., Mylläri, V., Sahimaa, O., & Anderson, R. (2018). Recycling potential of post-consumer plastic packaging waste in Finland. Waste Management, 71, 52-61. doi:10.1016/j.wasman.2017.10.033

Diaz Silvarrey, L. S., & Phan, A. N. (2016). Kinetic study of municipal plastic waste. International Journal of Hydrogen Energy, 41(37), 16352-16364. doi:10.1016/j.ijhydene.2016.05.202

Dwivedi, P., Mishra, P. K., Mondal, M. K., & Srivastava, N. (2019). Non-biodegradable polymeric waste pyrolysis for energy recovery. Heliyon, 5(8), e02198. doi:10.1016/j.heliyon.2019.e02198

Dymond, J. H., & Malhotra, R. (1988). The Tait equation: 100 years on. International Journal of Thermophysics, 9(6), 941-951. doi:10.1007/bf01133262

EU, 2008. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. https://eur-lex.europa.eu/eli/dir/2008/98/oj (accessed 29 May 2019).

EU, 2018. Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the landfill of waste (Text with EEA relevance) https://eur-lex.europa.eu/legal-content/es/TXT/?uri=CELEX%3A32018L0850 (accessed 29 May 2019).

Faraca, G., & Astrup, T. (2019). Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Management, 95, 388-398. doi:10.1016/j.wasman.2019.06.038

Gardette, M., Perthue, A., Gardette, J.-L., Janecska, T., Földes, E., Pukánszky, B., & Therias, S. (2013). Photo- and thermal-oxidation of polyethylene: Comparison of mechanisms and influence of unsaturation content. Polymer Degradation and Stability, 98(11), 2383-2390. doi:10.1016/j.polymdegradstab.2013.07.017

Gorghiu, L. M., Jipa, S., Zaharescu, T., Setnescu, R., & Mihalcea, I. (2004). The effect of metals on thermal degradation of polyethylenes. Polymer Degradation and Stability, 84(1), 7-11. doi:10.1016/s0141-3910(03)00265-9

Harris, J., Mey, I., Hajir, M., Mondeshki, M., & Wolf, S. E. (2015). Pseudomorphic transformation of amorphous calcium carbonate films follows spherulitic growth mechanisms and can give rise to crystal lattice tilting. CrystEngComm, 17(36), 6831-6837. doi:10.1039/c5ce00441a

Heikkinen, J. ., Hordijk, J. ., de Jong, W., & Spliethoff, H. (2004). Thermogravimetry as a tool to classify waste components to be used for energy generation. Journal of Analytical and Applied Pyrolysis, 71(2), 883-900. doi:10.1016/j.jaap.2003.12.001

Hestin, M., Faninger, T., Milios, L., 2015. Increased EU plastics recycling targets: Environmental, economic and social impact assessment. https://www.plasticsrecyclers.eu/sites/default/files/BIO_Deloitte_PRE_Plastics%20Recycling%20Impact_Assesment_Final%20Report.pdf (accessed 29 May 2019).

Heydariaraghi, M., Ghorbanian, S., Hallajisani, A., & Salehpour, A. (2016). Fuel properties of the oils produced from the pyrolysis of commonly-used polymers: Effect of fractionating column. Journal of Analytical and Applied Pyrolysis, 121, 307-317. doi:10.1016/j.jaap.2016.08.010

Horodytska, O., Valdés, F. J., & Fullana, A. (2018). Plastic flexible films waste management – A state of art review. Waste Management, 77, 413-425. doi:10.1016/j.wasman.2018.04.023

Hospodarova, V., Singovszka, E., & Stevulova, N. (2018). Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. American Journal of Analytical Chemistry, 09(06), 303-310. doi:10.4236/ajac.2018.96023

Hubbe, M. A., & Gill, R. A. (2016). Fillers for Papermaking: A Review of their Properties, Usage Practices, and their Mechanistic Role. BioResources, 11(1). doi:10.15376/biores.11.1.2886-2963

Hujuri, U., Ghoshal, A. K., & Gumma, S. (2008). Modeling pyrolysis kinetics of plastic mixtures. Polymer Degradation and Stability, 93(10), 1832-1837. doi:10.1016/j.polymdegradstab.2008.07.006

Khoo, H. H. (2019). LCA of plastic waste recovery into recycled materials, energy and fuels in Singapore. Resources, Conservation and Recycling, 145, 67-77. doi:10.1016/j.resconrec.2019.02.010

Kumar, S., & Singh, R. K. (2011). Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Brazilian Journal of Chemical Engineering, 28(4), 659-667. doi:10.1590/s0104-66322011000400011

Kunwar, B., Cheng, H. N., Chandrashekaran, S. R., & Sharma, B. K. (2016). Plastics to fuel: a review. Renewable and Sustainable Energy Reviews, 54, 421-428. doi:10.1016/j.rser.2015.10.015

Lafia-Araga, R. A., Hassan, A., Yahya, R., Rahman, N. A., Hornsby, P. R., & Heidarian, J. (2012). Thermal and mechanical properties of treated and untreated Red Balau (Shorea dipterocarpaceae)/LDPE composites. Journal of Reinforced Plastics and Composites, 31(4), 215-224. doi:10.1177/0731684411433913

Larkin, P., 2011. Chapter 8 – Illustrated IR and Raman spectra demonstrating important functional groups. In: Larkin, P. (Ed.), Infrared and Raman Spectroscopy. Elsevier, pp. 135-176. https://doi.org/10.1016/B978-0-12-386984-5.10008-4.

Liu, C., Wang, J., & He, J. (2002). Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE. Polymer, 43(13), 3811-3818. doi:10.1016/s0032-3861(02)00201-x

Lopez, G., Artetxe, M., Amutio, M., Bilbao, J., & Olazar, M. (2017). Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renewable and Sustainable Energy Reviews, 73, 346-368. doi:10.1016/j.rser.2017.01.142

Marshall, C. P., Kannangara, G. S. K., Alvarez, R., & Wilson, M. A. (2005). Characterisation of insoluble charcoal in Weipa bauxite. Carbon, 43(6), 1279-1285. doi:10.1016/j.carbon.2004.12.024

Oasmaa, A., Qureshi, M., S., Pihkola, H., Deviatkin, I., Mannila, J., Tenhunen, A., Minkkinen, H., Pohjakallio, M., Laine-Ylijoki, J., 2020. Pyrolysis of plastic waste: Opportunities and challenges. J. Anal. Appl. Pyrol. 104804. https://doi.org/10.1016/j.jaap.2020.104804 (in press).

Ojeda, T., 2013. Polymer degradation. In: IntechOpen, Polymers and the Environment. http://doi.org/10.5772/51057.

Öztaş, N. ., & Yürüm, Y. (2000). Pyrolysis of Turkish Zonguldak bituminous coal. Part 1. Effect of mineral matter. Fuel, 79(10), 1221-1227. doi:10.1016/s0016-2361(99)00255-0

Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuelA suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233-248. doi:10.1016/j.rser.2009.07.005

Park, K.-B., Jeong, Y.-S., Guzelciftci, B., & Kim, J.-S. (2019). Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene. Energy, 166, 343-351. doi:10.1016/j.energy.2018.10.078

Pereira, A. P. dos S., Silva, M. H. P. da, Lima Júnior, É. P., Paula, A. dos S., & Tommasini, F. J. (2017). Processing and Characterization of PET Composites Reinforced With Geopolymer Concrete Waste. Materials Research, 20(suppl 2), 411-420. doi:10.1590/1980-5373-mr-2017-0734

Pinto, F., Costa, P., Gulyurtlu, I., & Cabrita, I. (1999). Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. Journal of Analytical and Applied Pyrolysis, 51(1-2), 39-55. doi:10.1016/s0165-2370(99)00007-8

Plastics Europe, 2018. Plastics –the Facts 2018. An analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/en/resources/publications/619-plastics-facts-2018 (accessed 29 May 2019).

Plastics Europe, 2019a. Plastics –the Facts 2019. An analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/en/resources/publications/1804-plastics-facts-2019 (accessed 20 January 2020).

Plastics Europe, 2019b. The circular economy for plastics. A European overview. https://www.plasticseurope.org/en/resources/publications/1899-circular-economy-plastics-european-overview (accessed 20 January 2020).

Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24-58. doi:10.1016/j.wasman.2017.07.044

Sağın, E. U., Böke, H., Aras, N., & Yalçın, Ş. (2011). Determination of CaCO3 and SiO2 content in the binders of historic lime mortars. Materials and Structures, 45(6), 841-849. doi:10.1617/s11527-011-9802-1

Scott, R., Granchell, J., 2013. Analysis of metals content in Thermo Scientific Nalgene HDPE bottles and competitors. Application Note. Thermo Scientific. https://assets.thermofisher.com/TFS-Assets/LCD/Application-Notes/ANLSPMTLHDPEBTL-0713-HDPE-Bottle-Metal.pdf.

Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308-326. doi:10.1016/j.enconman.2016.02.037

Singh, R. K., Ruj, B., Sadhukhan, A. K., & Gupta, P. (2019). Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism. Journal of Environmental Management, 239, 395-406. doi:10.1016/j.jenvman.2019.03.067

Wang, J., 2012. PVT properties of polymers for injection molding, some critical issues for injection molding. In: Wang, J. (Ed.), Some Critical Issues for Injection Molding. IntechOpen. https://doi.org/10.5772/35212.

Wang, C., Wang, H., Fu, J., & Liu, Y. (2015). Flotation separation of waste plastics for recycling—A review. Waste Management, 41, 28-38. doi:10.1016/j.wasman.2015.03.027

Wong, S. L., Ngadi, N., Abdullah, T. A. T., & Inuwa, I. M. (2015). Current state and future prospects of plastic waste as source of fuel: A review. Renewable and Sustainable Energy Reviews, 50, 1167-1180. doi:10.1016/j.rser.2015.04.063

Wunderlich, B., 1990. Appendix – ATHAS table of thermal properties of linear macromolecules. In: Jovanovich, H.B. (Ed.), Thermal Analysis. Academic Press Inc., pp. 417–431. https://doi.org/10.1016/B978-0-12-765605-2.50012-1.

Yan, J., Karlsson, A., Zou, Z., Dai, D., & Edlund, U. (2020). Contamination of heavy metals and metalloids in biomass and waste fuels: Comparative characterisation and trend estimation. Science of The Total Environment, 700, 134382. doi:10.1016/j.scitotenv.2019.134382

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record