Mostrar el registro sencillo del ítem
dc.contributor.author | Gala, Alberto | es_ES |
dc.contributor.author | Guerrero, Marta | es_ES |
dc.contributor.author | Serra Alfaro, José Manuel | es_ES |
dc.date.accessioned | 2021-03-24T04:31:18Z | |
dc.date.available | 2021-03-24T04:31:18Z | |
dc.date.issued | 2020-06-15 | es_ES |
dc.identifier.issn | 0956-053X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/164159 | |
dc.description.abstract | [EN] The purpose of this paper is to provide a full characterization of post-consumer plastic film recovered from mixed municipal solid waste (MSW) treatment plants in Spain. Currently, this type of plastic waste is not recycled due to technical or economic barriers and is still sent to landfill. Different types of municipal plastic waste (MPW) from manual and automated sorting were studied: i) colour plastic film recovered by ballistic separators and then manual sorting in different seasons; ii) colour plastic film recovered by automated sorting (air suction); and iii) white plastic film from primary manual sorting process. The samples were characterized by different techniques, including the ultimate and proximate analysis, Higher Heating Value (HHV) and Lower Heating Value (LHV), metal content, Thermogravimetric Analysis (TGA) and Derivative Thermogravimetry (DTG), Fourier Transform Infrared (FT-IR) analysis and Differential Scanning Calorimetry (DSC). The results were compared to those obtained for pretreated colour and white plastic film waste and contrasted with industrial recycled film granules of polyethylene (as a reference material for packaging film). Additionally, pretreated plastic film samples were also characterized by analyzing viscosity, Pressure-Volume-Temperature (PVT) diagram, specific heat capacity and halogen and sulphur contents. Characterization data from this study will contribute to identify and develop potential recycling alternatives for a more sustainable municipal plastic waste management, which is recognized as a priority in the European Circular Economy Action Plan to use resources in a more sustainable way. | es_ES |
dc.description.sponsorship | The authors acknowledge the financial support of the Centre for the Development of Industrial Technology [grant number IDI - 20181081] and the Ministerio de Ciencia, Innovacion y Universidades (Spain) [grant number DI - 16 - 08700]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Waste Management | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Municipal plastic waste | es_ES |
dc.subject | Sorting | es_ES |
dc.subject | Plastic waste characterization | es_ES |
dc.subject | Recycling | es_ES |
dc.subject | Circular economy | es_ES |
dc.title | Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the successful implementation of sustainable plastic waste management strategies | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.wasman.2020.05.019 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//DI-16-08700/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CDTI//IDI-20181081/ES/Economía circular para la valorización de los residuos plásticos urbanos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Gala, A.; Guerrero, M.; Serra Alfaro, JM. (2020). Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the successful implementation of sustainable plastic waste management strategies. Waste Management. 111:22-33. https://doi.org/10.1016/j.wasman.2020.05.019 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.wasman.2020.05.019 | es_ES |
dc.description.upvformatpinicio | 22 | es_ES |
dc.description.upvformatpfin | 33 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 111 | es_ES |
dc.identifier.pmid | 32470724 | es_ES |
dc.relation.pasarela | S\414259 | es_ES |
dc.contributor.funder | Centro para el Desarrollo Tecnológico Industrial | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Abraham, D., George, K. E., & Francis, D. J. (1992). Melt Viscosity and Elasticity of Low Density and Linear Low Density Polyethylene Blends. International Journal of Polymeric Materials, 18(3-4), 197-211. doi:10.1080/00914039208029321 | es_ES |
dc.description.references | Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, Ε. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3), 536-542. doi:10.1016/j.jhazmat.2007.06.076 | es_ES |
dc.description.references | AENOR (Asociación Española de Normalización y Certificación), 2005. UNE 53087 – 2:2005 Plastics and rubber. Determination of chlorine content. Part 2. Method of coulombimetry. | es_ES |
dc.description.references | Al-Salem, S.M., 2019. Feedstock and optimal operation for plastics to fuel conversion in pyrolysis. In: Al-Salem, S.M. (Ed.), Plastics to Energy: Fuel, Chemicals, and Sustainability Implications. William Andrew Publishing, pp. 117–146. https://doi.org/10.1016/B978-0-12-813140-4.00005-4. | es_ES |
dc.description.references | Alvarenga, L. M., Xavier, T. P., Barrozo, M. A. S., Bacelos, M. S., & Lira, T. S. (2016). Determination of activation energy of pyrolysis of carton packaging wastes and its pure components using thermogravimetry. Waste Management, 53, 68-75. doi:10.1016/j.wasman.2016.04.015 | es_ES |
dc.description.references | Ambrogi, V., Carfagna, C., Cerruti, P., Marturano, V., 2017. Additives in polymers. In: Jasso-Gatinel, C.F., Kenny (Eds.), Modification of polymer properties. William Andrew Publishing, pp. 87–108. https://doi.org/10.1016/B978-0-323-44353-1.00004-X. | es_ES |
dc.description.references | Angyal, A., Miskolczi, N., & Bartha, L. (2007). Petrochemical feedstock by thermal cracking of plastic waste. Journal of Analytical and Applied Pyrolysis, 79(1-2), 409-414. doi:10.1016/j.jaap.2006.12.031 | es_ES |
dc.description.references | Argyle, M., & Bartholomew, C. (2015). Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts, 5(1), 145-269. doi:10.3390/catal5010145 | es_ES |
dc.description.references | ASTM International, 2017. E2550 – 17 Standard test method for thermal stability by thermogravimetry. http://doi.org/10.1520/E2550-17. | es_ES |
dc.description.references | Bisinella, V., Götze, R., Conradsen, K., Damgaard, A., Christensen, T. H., & Astrup, T. F. (2017). Importance of waste composition for Life Cycle Assessment of waste management solutions. Journal of Cleaner Production, 164, 1180-1191. doi:10.1016/j.jclepro.2017.07.013 | es_ES |
dc.description.references | Boyard, N., Delaunay, D., 2016. Experimental determination and modeling of thermophysical properties. In: Boyard, N. (Ed.), Heat Transfer in Polymer Composite Materials: Forming Processes. John Wiley & Sons, Inc., London, Great Britain, pp. 29–76. https://doi.org/10.1002/9781119116288.ch2. | es_ES |
dc.description.references | British Plastics Federation. https://www.bpf.co.uk/packaging/Default.aspx (accessed 20 September 2019). | es_ES |
dc.description.references | Brydson, J.A., 1999. Relation of structure to thermal and mechanical properties. In: Brydson, J.A. (Ed.), Plastics Materials (Seven Edition). Butterworth-Heinemann, pp. 59–75. https://doi.org/10.1016/B978-075064132-6/50045-0. | es_ES |
dc.description.references | CEN (European Committee for Standardization), 2006. CEN/TR 15310-3:2006 Characterization of waste – Sampling of waste materials – Part 3: Guidance on procedures for sub – sampling in the field. Work Item Number: 00292018. | es_ES |
dc.description.references | CEN (European Committee for Standardization), 2011a. EN 15407:2011 Solid recovered fuels – Methods for the determination of carbon (C), hydrogen (H) and nitrogen (N) content. Work Item Number: 00343057. | es_ES |
dc.description.references | CEN (European Committee for Standardization), 2011b. EN 15414 – 3:2011 Solid recovered fuels – Determination of moisture content using the oven dry method – Part 3: Moisture in general analysis sample. Work Item Number: 00343055. | es_ES |
dc.description.references | CEN (European Committee for Standardization), 2011c. EN 15402:2011 Solid recovered fuels – Determination of the content of volatile matter. Work Item Number: 00343048. | es_ES |
dc.description.references | CEN (European Committee for Standardization), 2011d. EN 15403:2011 Solid recovered fuels – Determination of ash content. Work Item Number: 00343049. | es_ES |
dc.description.references | CEN (European Committee for Standardization), 2011e. EN 15400:2011 Solid recovered fuel – Determination of calorific value. Work Item Number: 00343046. | es_ES |
dc.description.references | CEN (European Committee for Standardization), 2011f. EN 15407:2011 Solid recovered fuel – Methods for the determination of carbon (C), hydrogen (H) and nitrogen (N) content. Work Item Number: 00343057. | es_ES |
dc.description.references | CEN (European Committee for Standardization), 2011g. EN 15410:2012 Solid recovered fuel – Methods for the determination of the content of major elements (Al, Ca, Fe, K, Mg, Na, P, Si, Ti). Work Item Number: 00343059. | es_ES |
dc.description.references | CEN (European Committee for Standardization), 2018. EN ISO 11357-3:2018 Plastics – Differential scanning calorimetry (DSC) – Part 3: Determination of temperature and enthalpy of melting and crystallization (ISO 11357 – 3:2018). Work Item Number: 00249987. | es_ES |
dc.description.references | Cross, M. M. (1965). Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. Journal of Colloid Science, 20(5), 417-437. doi:10.1016/0095-8522(65)90022-x | es_ES |
dc.description.references | Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., & Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 3, 171-197. doi:10.1016/j.tsep.2017.06.003 | es_ES |
dc.description.references | Dahlbo, H., Poliakova, V., Mylläri, V., Sahimaa, O., & Anderson, R. (2018). Recycling potential of post-consumer plastic packaging waste in Finland. Waste Management, 71, 52-61. doi:10.1016/j.wasman.2017.10.033 | es_ES |
dc.description.references | Diaz Silvarrey, L. S., & Phan, A. N. (2016). Kinetic study of municipal plastic waste. International Journal of Hydrogen Energy, 41(37), 16352-16364. doi:10.1016/j.ijhydene.2016.05.202 | es_ES |
dc.description.references | Dwivedi, P., Mishra, P. K., Mondal, M. K., & Srivastava, N. (2019). Non-biodegradable polymeric waste pyrolysis for energy recovery. Heliyon, 5(8), e02198. doi:10.1016/j.heliyon.2019.e02198 | es_ES |
dc.description.references | Dymond, J. H., & Malhotra, R. (1988). The Tait equation: 100 years on. International Journal of Thermophysics, 9(6), 941-951. doi:10.1007/bf01133262 | es_ES |
dc.description.references | EU, 2008. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. https://eur-lex.europa.eu/eli/dir/2008/98/oj (accessed 29 May 2019). | es_ES |
dc.description.references | EU, 2018. Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the landfill of waste (Text with EEA relevance) https://eur-lex.europa.eu/legal-content/es/TXT/?uri=CELEX%3A32018L0850 (accessed 29 May 2019). | es_ES |
dc.description.references | Faraca, G., & Astrup, T. (2019). Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Management, 95, 388-398. doi:10.1016/j.wasman.2019.06.038 | es_ES |
dc.description.references | Gardette, M., Perthue, A., Gardette, J.-L., Janecska, T., Földes, E., Pukánszky, B., & Therias, S. (2013). Photo- and thermal-oxidation of polyethylene: Comparison of mechanisms and influence of unsaturation content. Polymer Degradation and Stability, 98(11), 2383-2390. doi:10.1016/j.polymdegradstab.2013.07.017 | es_ES |
dc.description.references | Gorghiu, L. M., Jipa, S., Zaharescu, T., Setnescu, R., & Mihalcea, I. (2004). The effect of metals on thermal degradation of polyethylenes. Polymer Degradation and Stability, 84(1), 7-11. doi:10.1016/s0141-3910(03)00265-9 | es_ES |
dc.description.references | Harris, J., Mey, I., Hajir, M., Mondeshki, M., & Wolf, S. E. (2015). Pseudomorphic transformation of amorphous calcium carbonate films follows spherulitic growth mechanisms and can give rise to crystal lattice tilting. CrystEngComm, 17(36), 6831-6837. doi:10.1039/c5ce00441a | es_ES |
dc.description.references | Heikkinen, J. ., Hordijk, J. ., de Jong, W., & Spliethoff, H. (2004). Thermogravimetry as a tool to classify waste components to be used for energy generation. Journal of Analytical and Applied Pyrolysis, 71(2), 883-900. doi:10.1016/j.jaap.2003.12.001 | es_ES |
dc.description.references | Hestin, M., Faninger, T., Milios, L., 2015. Increased EU plastics recycling targets: Environmental, economic and social impact assessment. https://www.plasticsrecyclers.eu/sites/default/files/BIO_Deloitte_PRE_Plastics%20Recycling%20Impact_Assesment_Final%20Report.pdf (accessed 29 May 2019). | es_ES |
dc.description.references | Heydariaraghi, M., Ghorbanian, S., Hallajisani, A., & Salehpour, A. (2016). Fuel properties of the oils produced from the pyrolysis of commonly-used polymers: Effect of fractionating column. Journal of Analytical and Applied Pyrolysis, 121, 307-317. doi:10.1016/j.jaap.2016.08.010 | es_ES |
dc.description.references | Horodytska, O., Valdés, F. J., & Fullana, A. (2018). Plastic flexible films waste management – A state of art review. Waste Management, 77, 413-425. doi:10.1016/j.wasman.2018.04.023 | es_ES |
dc.description.references | Hospodarova, V., Singovszka, E., & Stevulova, N. (2018). Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. American Journal of Analytical Chemistry, 09(06), 303-310. doi:10.4236/ajac.2018.96023 | es_ES |
dc.description.references | Hubbe, M. A., & Gill, R. A. (2016). Fillers for Papermaking: A Review of their Properties, Usage Practices, and their Mechanistic Role. BioResources, 11(1). doi:10.15376/biores.11.1.2886-2963 | es_ES |
dc.description.references | Hujuri, U., Ghoshal, A. K., & Gumma, S. (2008). Modeling pyrolysis kinetics of plastic mixtures. Polymer Degradation and Stability, 93(10), 1832-1837. doi:10.1016/j.polymdegradstab.2008.07.006 | es_ES |
dc.description.references | Khoo, H. H. (2019). LCA of plastic waste recovery into recycled materials, energy and fuels in Singapore. Resources, Conservation and Recycling, 145, 67-77. doi:10.1016/j.resconrec.2019.02.010 | es_ES |
dc.description.references | Kumar, S., & Singh, R. K. (2011). Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Brazilian Journal of Chemical Engineering, 28(4), 659-667. doi:10.1590/s0104-66322011000400011 | es_ES |
dc.description.references | Kunwar, B., Cheng, H. N., Chandrashekaran, S. R., & Sharma, B. K. (2016). Plastics to fuel: a review. Renewable and Sustainable Energy Reviews, 54, 421-428. doi:10.1016/j.rser.2015.10.015 | es_ES |
dc.description.references | Lafia-Araga, R. A., Hassan, A., Yahya, R., Rahman, N. A., Hornsby, P. R., & Heidarian, J. (2012). Thermal and mechanical properties of treated and untreated Red Balau (Shorea dipterocarpaceae)/LDPE composites. Journal of Reinforced Plastics and Composites, 31(4), 215-224. doi:10.1177/0731684411433913 | es_ES |
dc.description.references | Larkin, P., 2011. Chapter 8 – Illustrated IR and Raman spectra demonstrating important functional groups. In: Larkin, P. (Ed.), Infrared and Raman Spectroscopy. Elsevier, pp. 135-176. https://doi.org/10.1016/B978-0-12-386984-5.10008-4. | es_ES |
dc.description.references | Liu, C., Wang, J., & He, J. (2002). Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE. Polymer, 43(13), 3811-3818. doi:10.1016/s0032-3861(02)00201-x | es_ES |
dc.description.references | Lopez, G., Artetxe, M., Amutio, M., Bilbao, J., & Olazar, M. (2017). Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renewable and Sustainable Energy Reviews, 73, 346-368. doi:10.1016/j.rser.2017.01.142 | es_ES |
dc.description.references | Marshall, C. P., Kannangara, G. S. K., Alvarez, R., & Wilson, M. A. (2005). Characterisation of insoluble charcoal in Weipa bauxite. Carbon, 43(6), 1279-1285. doi:10.1016/j.carbon.2004.12.024 | es_ES |
dc.description.references | Oasmaa, A., Qureshi, M., S., Pihkola, H., Deviatkin, I., Mannila, J., Tenhunen, A., Minkkinen, H., Pohjakallio, M., Laine-Ylijoki, J., 2020. Pyrolysis of plastic waste: Opportunities and challenges. J. Anal. Appl. Pyrol. 104804. https://doi.org/10.1016/j.jaap.2020.104804 (in press). | es_ES |
dc.description.references | Ojeda, T., 2013. Polymer degradation. In: IntechOpen, Polymers and the Environment. http://doi.org/10.5772/51057. | es_ES |
dc.description.references | Öztaş, N. ., & Yürüm, Y. (2000). Pyrolysis of Turkish Zonguldak bituminous coal. Part 1. Effect of mineral matter. Fuel, 79(10), 1221-1227. doi:10.1016/s0016-2361(99)00255-0 | es_ES |
dc.description.references | Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuelA suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233-248. doi:10.1016/j.rser.2009.07.005 | es_ES |
dc.description.references | Park, K.-B., Jeong, Y.-S., Guzelciftci, B., & Kim, J.-S. (2019). Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene. Energy, 166, 343-351. doi:10.1016/j.energy.2018.10.078 | es_ES |
dc.description.references | Pereira, A. P. dos S., Silva, M. H. P. da, Lima Júnior, É. P., Paula, A. dos S., & Tommasini, F. J. (2017). Processing and Characterization of PET Composites Reinforced With Geopolymer Concrete Waste. Materials Research, 20(suppl 2), 411-420. doi:10.1590/1980-5373-mr-2017-0734 | es_ES |
dc.description.references | Pinto, F., Costa, P., Gulyurtlu, I., & Cabrita, I. (1999). Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. Journal of Analytical and Applied Pyrolysis, 51(1-2), 39-55. doi:10.1016/s0165-2370(99)00007-8 | es_ES |
dc.description.references | Plastics Europe, 2018. Plastics –the Facts 2018. An analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/en/resources/publications/619-plastics-facts-2018 (accessed 29 May 2019). | es_ES |
dc.description.references | Plastics Europe, 2019a. Plastics –the Facts 2019. An analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/en/resources/publications/1804-plastics-facts-2019 (accessed 20 January 2020). | es_ES |
dc.description.references | Plastics Europe, 2019b. The circular economy for plastics. A European overview. https://www.plasticseurope.org/en/resources/publications/1899-circular-economy-plastics-european-overview (accessed 20 January 2020). | es_ES |
dc.description.references | Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24-58. doi:10.1016/j.wasman.2017.07.044 | es_ES |
dc.description.references | Sağın, E. U., Böke, H., Aras, N., & Yalçın, Ş. (2011). Determination of CaCO3 and SiO2 content in the binders of historic lime mortars. Materials and Structures, 45(6), 841-849. doi:10.1617/s11527-011-9802-1 | es_ES |
dc.description.references | Scott, R., Granchell, J., 2013. Analysis of metals content in Thermo Scientific Nalgene HDPE bottles and competitors. Application Note. Thermo Scientific. https://assets.thermofisher.com/TFS-Assets/LCD/Application-Notes/ANLSPMTLHDPEBTL-0713-HDPE-Bottle-Metal.pdf. | es_ES |
dc.description.references | Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308-326. doi:10.1016/j.enconman.2016.02.037 | es_ES |
dc.description.references | Singh, R. K., Ruj, B., Sadhukhan, A. K., & Gupta, P. (2019). Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism. Journal of Environmental Management, 239, 395-406. doi:10.1016/j.jenvman.2019.03.067 | es_ES |
dc.description.references | Wang, J., 2012. PVT properties of polymers for injection molding, some critical issues for injection molding. In: Wang, J. (Ed.), Some Critical Issues for Injection Molding. IntechOpen. https://doi.org/10.5772/35212. | es_ES |
dc.description.references | Wang, C., Wang, H., Fu, J., & Liu, Y. (2015). Flotation separation of waste plastics for recycling—A review. Waste Management, 41, 28-38. doi:10.1016/j.wasman.2015.03.027 | es_ES |
dc.description.references | Wong, S. L., Ngadi, N., Abdullah, T. A. T., & Inuwa, I. M. (2015). Current state and future prospects of plastic waste as source of fuel: A review. Renewable and Sustainable Energy Reviews, 50, 1167-1180. doi:10.1016/j.rser.2015.04.063 | es_ES |
dc.description.references | Wunderlich, B., 1990. Appendix – ATHAS table of thermal properties of linear macromolecules. In: Jovanovich, H.B. (Ed.), Thermal Analysis. Academic Press Inc., pp. 417–431. https://doi.org/10.1016/B978-0-12-765605-2.50012-1. | es_ES |
dc.description.references | Yan, J., Karlsson, A., Zou, Z., Dai, D., & Edlund, U. (2020). Contamination of heavy metals and metalloids in biomass and waste fuels: Comparative characterisation and trend estimation. Science of The Total Environment, 700, 134382. doi:10.1016/j.scitotenv.2019.134382 | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |