- -

Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the successful implementation of sustainable plastic waste management strategies

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the successful implementation of sustainable plastic waste management strategies

Show simple item record

Files in this item

dc.contributor.author Gala, Alberto es_ES
dc.contributor.author Guerrero, Marta es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2021-03-24T04:31:18Z
dc.date.available 2021-03-24T04:31:18Z
dc.date.issued 2020-06-15 es_ES
dc.identifier.issn 0956-053X es_ES
dc.identifier.uri http://hdl.handle.net/10251/164159
dc.description.abstract [EN] The purpose of this paper is to provide a full characterization of post-consumer plastic film recovered from mixed municipal solid waste (MSW) treatment plants in Spain. Currently, this type of plastic waste is not recycled due to technical or economic barriers and is still sent to landfill. Different types of municipal plastic waste (MPW) from manual and automated sorting were studied: i) colour plastic film recovered by ballistic separators and then manual sorting in different seasons; ii) colour plastic film recovered by automated sorting (air suction); and iii) white plastic film from primary manual sorting process. The samples were characterized by different techniques, including the ultimate and proximate analysis, Higher Heating Value (HHV) and Lower Heating Value (LHV), metal content, Thermogravimetric Analysis (TGA) and Derivative Thermogravimetry (DTG), Fourier Transform Infrared (FT-IR) analysis and Differential Scanning Calorimetry (DSC). The results were compared to those obtained for pretreated colour and white plastic film waste and contrasted with industrial recycled film granules of polyethylene (as a reference material for packaging film). Additionally, pretreated plastic film samples were also characterized by analyzing viscosity, Pressure-Volume-Temperature (PVT) diagram, specific heat capacity and halogen and sulphur contents. Characterization data from this study will contribute to identify and develop potential recycling alternatives for a more sustainable municipal plastic waste management, which is recognized as a priority in the European Circular Economy Action Plan to use resources in a more sustainable way. es_ES
dc.description.sponsorship The authors acknowledge the financial support of the Centre for the Development of Industrial Technology [grant number IDI - 20181081] and the Ministerio de Ciencia, Innovacion y Universidades (Spain) [grant number DI - 16 - 08700]. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Waste Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Municipal plastic waste es_ES
dc.subject Sorting es_ES
dc.subject Plastic waste characterization es_ES
dc.subject Recycling es_ES
dc.subject Circular economy es_ES
dc.title Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the successful implementation of sustainable plastic waste management strategies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.wasman.2020.05.019 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//DI-16-08700/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CDTI//IDI-20181081/ES/Economía circular para la valorización de los residuos plásticos urbanos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gala, A.; Guerrero, M.; Serra Alfaro, JM. (2020). Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the successful implementation of sustainable plastic waste management strategies. Waste Management. 111:22-33. https://doi.org/10.1016/j.wasman.2020.05.019 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.wasman.2020.05.019 es_ES
dc.description.upvformatpinicio 22 es_ES
dc.description.upvformatpfin 33 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 111 es_ES
dc.identifier.pmid 32470724 es_ES
dc.relation.pasarela S\414259 es_ES
dc.contributor.funder Centro para el Desarrollo Tecnológico Industrial es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Abraham, D., George, K. E., & Francis, D. J. (1992). Melt Viscosity and Elasticity of Low Density and Linear Low Density Polyethylene Blends. International Journal of Polymeric Materials, 18(3-4), 197-211. doi:10.1080/00914039208029321 es_ES
dc.description.references Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, Ε. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3), 536-542. doi:10.1016/j.jhazmat.2007.06.076 es_ES
dc.description.references AENOR (Asociación Española de Normalización y Certificación), 2005. UNE 53087 – 2:2005 Plastics and rubber. Determination of chlorine content. Part 2. Method of coulombimetry. es_ES
dc.description.references Al-Salem, S.M., 2019. Feedstock and optimal operation for plastics to fuel conversion in pyrolysis. In: Al-Salem, S.M. (Ed.), Plastics to Energy: Fuel, Chemicals, and Sustainability Implications. William Andrew Publishing, pp. 117–146. https://doi.org/10.1016/B978-0-12-813140-4.00005-4. es_ES
dc.description.references Alvarenga, L. M., Xavier, T. P., Barrozo, M. A. S., Bacelos, M. S., & Lira, T. S. (2016). Determination of activation energy of pyrolysis of carton packaging wastes and its pure components using thermogravimetry. Waste Management, 53, 68-75. doi:10.1016/j.wasman.2016.04.015 es_ES
dc.description.references Ambrogi, V., Carfagna, C., Cerruti, P., Marturano, V., 2017. Additives in polymers. In: Jasso-Gatinel, C.F., Kenny (Eds.), Modification of polymer properties. William Andrew Publishing, pp. 87–108. https://doi.org/10.1016/B978-0-323-44353-1.00004-X. es_ES
dc.description.references Angyal, A., Miskolczi, N., & Bartha, L. (2007). Petrochemical feedstock by thermal cracking of plastic waste. Journal of Analytical and Applied Pyrolysis, 79(1-2), 409-414. doi:10.1016/j.jaap.2006.12.031 es_ES
dc.description.references Argyle, M., & Bartholomew, C. (2015). Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts, 5(1), 145-269. doi:10.3390/catal5010145 es_ES
dc.description.references ASTM International, 2017. E2550 – 17 Standard test method for thermal stability by thermogravimetry. http://doi.org/10.1520/E2550-17. es_ES
dc.description.references Bisinella, V., Götze, R., Conradsen, K., Damgaard, A., Christensen, T. H., & Astrup, T. F. (2017). Importance of waste composition for Life Cycle Assessment of waste management solutions. Journal of Cleaner Production, 164, 1180-1191. doi:10.1016/j.jclepro.2017.07.013 es_ES
dc.description.references Boyard, N., Delaunay, D., 2016. Experimental determination and modeling of thermophysical properties. In: Boyard, N. (Ed.), Heat Transfer in Polymer Composite Materials: Forming Processes. John Wiley & Sons, Inc., London, Great Britain, pp. 29–76. https://doi.org/10.1002/9781119116288.ch2. es_ES
dc.description.references British Plastics Federation. https://www.bpf.co.uk/packaging/Default.aspx (accessed 20 September 2019). es_ES
dc.description.references Brydson, J.A., 1999. Relation of structure to thermal and mechanical properties. In: Brydson, J.A. (Ed.), Plastics Materials (Seven Edition). Butterworth-Heinemann, pp. 59–75. https://doi.org/10.1016/B978-075064132-6/50045-0. es_ES
dc.description.references CEN (European Committee for Standardization), 2006. CEN/TR 15310-3:2006 Characterization of waste – Sampling of waste materials – Part 3: Guidance on procedures for sub – sampling in the field. Work Item Number: 00292018. es_ES
dc.description.references CEN (European Committee for Standardization), 2011a. EN 15407:2011 Solid recovered fuels – Methods for the determination of carbon (C), hydrogen (H) and nitrogen (N) content. Work Item Number: 00343057. es_ES
dc.description.references CEN (European Committee for Standardization), 2011b. EN 15414 – 3:2011 Solid recovered fuels – Determination of moisture content using the oven dry method – Part 3: Moisture in general analysis sample. Work Item Number: 00343055. es_ES
dc.description.references CEN (European Committee for Standardization), 2011c. EN 15402:2011 Solid recovered fuels – Determination of the content of volatile matter. Work Item Number: 00343048. es_ES
dc.description.references CEN (European Committee for Standardization), 2011d. EN 15403:2011 Solid recovered fuels – Determination of ash content. Work Item Number: 00343049. es_ES
dc.description.references CEN (European Committee for Standardization), 2011e. EN 15400:2011 Solid recovered fuel – Determination of calorific value. Work Item Number: 00343046. es_ES
dc.description.references CEN (European Committee for Standardization), 2011f. EN 15407:2011 Solid recovered fuel – Methods for the determination of carbon (C), hydrogen (H) and nitrogen (N) content. Work Item Number: 00343057. es_ES
dc.description.references CEN (European Committee for Standardization), 2011g. EN 15410:2012 Solid recovered fuel – Methods for the determination of the content of major elements (Al, Ca, Fe, K, Mg, Na, P, Si, Ti). Work Item Number: 00343059. es_ES
dc.description.references CEN (European Committee for Standardization), 2018. EN ISO 11357-3:2018 Plastics – Differential scanning calorimetry (DSC) – Part 3: Determination of temperature and enthalpy of melting and crystallization (ISO 11357 – 3:2018). Work Item Number: 00249987. es_ES
dc.description.references Cross, M. M. (1965). Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. Journal of Colloid Science, 20(5), 417-437. doi:10.1016/0095-8522(65)90022-x es_ES
dc.description.references Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., & Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 3, 171-197. doi:10.1016/j.tsep.2017.06.003 es_ES
dc.description.references Dahlbo, H., Poliakova, V., Mylläri, V., Sahimaa, O., & Anderson, R. (2018). Recycling potential of post-consumer plastic packaging waste in Finland. Waste Management, 71, 52-61. doi:10.1016/j.wasman.2017.10.033 es_ES
dc.description.references Diaz Silvarrey, L. S., & Phan, A. N. (2016). Kinetic study of municipal plastic waste. International Journal of Hydrogen Energy, 41(37), 16352-16364. doi:10.1016/j.ijhydene.2016.05.202 es_ES
dc.description.references Dwivedi, P., Mishra, P. K., Mondal, M. K., & Srivastava, N. (2019). Non-biodegradable polymeric waste pyrolysis for energy recovery. Heliyon, 5(8), e02198. doi:10.1016/j.heliyon.2019.e02198 es_ES
dc.description.references Dymond, J. H., & Malhotra, R. (1988). The Tait equation: 100 years on. International Journal of Thermophysics, 9(6), 941-951. doi:10.1007/bf01133262 es_ES
dc.description.references EU, 2008. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. https://eur-lex.europa.eu/eli/dir/2008/98/oj (accessed 29 May 2019). es_ES
dc.description.references EU, 2018. Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the landfill of waste (Text with EEA relevance) https://eur-lex.europa.eu/legal-content/es/TXT/?uri=CELEX%3A32018L0850 (accessed 29 May 2019). es_ES
dc.description.references Faraca, G., & Astrup, T. (2019). Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Management, 95, 388-398. doi:10.1016/j.wasman.2019.06.038 es_ES
dc.description.references Gardette, M., Perthue, A., Gardette, J.-L., Janecska, T., Földes, E., Pukánszky, B., & Therias, S. (2013). Photo- and thermal-oxidation of polyethylene: Comparison of mechanisms and influence of unsaturation content. Polymer Degradation and Stability, 98(11), 2383-2390. doi:10.1016/j.polymdegradstab.2013.07.017 es_ES
dc.description.references Gorghiu, L. M., Jipa, S., Zaharescu, T., Setnescu, R., & Mihalcea, I. (2004). The effect of metals on thermal degradation of polyethylenes. Polymer Degradation and Stability, 84(1), 7-11. doi:10.1016/s0141-3910(03)00265-9 es_ES
dc.description.references Harris, J., Mey, I., Hajir, M., Mondeshki, M., & Wolf, S. E. (2015). Pseudomorphic transformation of amorphous calcium carbonate films follows spherulitic growth mechanisms and can give rise to crystal lattice tilting. CrystEngComm, 17(36), 6831-6837. doi:10.1039/c5ce00441a es_ES
dc.description.references Heikkinen, J. ., Hordijk, J. ., de Jong, W., & Spliethoff, H. (2004). Thermogravimetry as a tool to classify waste components to be used for energy generation. Journal of Analytical and Applied Pyrolysis, 71(2), 883-900. doi:10.1016/j.jaap.2003.12.001 es_ES
dc.description.references Hestin, M., Faninger, T., Milios, L., 2015. Increased EU plastics recycling targets: Environmental, economic and social impact assessment. https://www.plasticsrecyclers.eu/sites/default/files/BIO_Deloitte_PRE_Plastics%20Recycling%20Impact_Assesment_Final%20Report.pdf (accessed 29 May 2019). es_ES
dc.description.references Heydariaraghi, M., Ghorbanian, S., Hallajisani, A., & Salehpour, A. (2016). Fuel properties of the oils produced from the pyrolysis of commonly-used polymers: Effect of fractionating column. Journal of Analytical and Applied Pyrolysis, 121, 307-317. doi:10.1016/j.jaap.2016.08.010 es_ES
dc.description.references Horodytska, O., Valdés, F. J., & Fullana, A. (2018). Plastic flexible films waste management – A state of art review. Waste Management, 77, 413-425. doi:10.1016/j.wasman.2018.04.023 es_ES
dc.description.references Hospodarova, V., Singovszka, E., & Stevulova, N. (2018). Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. American Journal of Analytical Chemistry, 09(06), 303-310. doi:10.4236/ajac.2018.96023 es_ES
dc.description.references Hubbe, M. A., & Gill, R. A. (2016). Fillers for Papermaking: A Review of their Properties, Usage Practices, and their Mechanistic Role. BioResources, 11(1). doi:10.15376/biores.11.1.2886-2963 es_ES
dc.description.references Hujuri, U., Ghoshal, A. K., & Gumma, S. (2008). Modeling pyrolysis kinetics of plastic mixtures. Polymer Degradation and Stability, 93(10), 1832-1837. doi:10.1016/j.polymdegradstab.2008.07.006 es_ES
dc.description.references Khoo, H. H. (2019). LCA of plastic waste recovery into recycled materials, energy and fuels in Singapore. Resources, Conservation and Recycling, 145, 67-77. doi:10.1016/j.resconrec.2019.02.010 es_ES
dc.description.references Kumar, S., & Singh, R. K. (2011). Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Brazilian Journal of Chemical Engineering, 28(4), 659-667. doi:10.1590/s0104-66322011000400011 es_ES
dc.description.references Kunwar, B., Cheng, H. N., Chandrashekaran, S. R., & Sharma, B. K. (2016). Plastics to fuel: a review. Renewable and Sustainable Energy Reviews, 54, 421-428. doi:10.1016/j.rser.2015.10.015 es_ES
dc.description.references Lafia-Araga, R. A., Hassan, A., Yahya, R., Rahman, N. A., Hornsby, P. R., & Heidarian, J. (2012). Thermal and mechanical properties of treated and untreated Red Balau (Shorea dipterocarpaceae)/LDPE composites. Journal of Reinforced Plastics and Composites, 31(4), 215-224. doi:10.1177/0731684411433913 es_ES
dc.description.references Larkin, P., 2011. Chapter 8 – Illustrated IR and Raman spectra demonstrating important functional groups. In: Larkin, P. (Ed.), Infrared and Raman Spectroscopy. Elsevier, pp. 135-176. https://doi.org/10.1016/B978-0-12-386984-5.10008-4. es_ES
dc.description.references Liu, C., Wang, J., & He, J. (2002). Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE. Polymer, 43(13), 3811-3818. doi:10.1016/s0032-3861(02)00201-x es_ES
dc.description.references Lopez, G., Artetxe, M., Amutio, M., Bilbao, J., & Olazar, M. (2017). Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renewable and Sustainable Energy Reviews, 73, 346-368. doi:10.1016/j.rser.2017.01.142 es_ES
dc.description.references Marshall, C. P., Kannangara, G. S. K., Alvarez, R., & Wilson, M. A. (2005). Characterisation of insoluble charcoal in Weipa bauxite. Carbon, 43(6), 1279-1285. doi:10.1016/j.carbon.2004.12.024 es_ES
dc.description.references Oasmaa, A., Qureshi, M., S., Pihkola, H., Deviatkin, I., Mannila, J., Tenhunen, A., Minkkinen, H., Pohjakallio, M., Laine-Ylijoki, J., 2020. Pyrolysis of plastic waste: Opportunities and challenges. J. Anal. Appl. Pyrol. 104804. https://doi.org/10.1016/j.jaap.2020.104804 (in press). es_ES
dc.description.references Ojeda, T., 2013. Polymer degradation. In: IntechOpen, Polymers and the Environment. http://doi.org/10.5772/51057. es_ES
dc.description.references Öztaş, N. ., & Yürüm, Y. (2000). Pyrolysis of Turkish Zonguldak bituminous coal. Part 1. Effect of mineral matter. Fuel, 79(10), 1221-1227. doi:10.1016/s0016-2361(99)00255-0 es_ES
dc.description.references Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuelA suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233-248. doi:10.1016/j.rser.2009.07.005 es_ES
dc.description.references Park, K.-B., Jeong, Y.-S., Guzelciftci, B., & Kim, J.-S. (2019). Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene. Energy, 166, 343-351. doi:10.1016/j.energy.2018.10.078 es_ES
dc.description.references Pereira, A. P. dos S., Silva, M. H. P. da, Lima Júnior, É. P., Paula, A. dos S., & Tommasini, F. J. (2017). Processing and Characterization of PET Composites Reinforced With Geopolymer Concrete Waste. Materials Research, 20(suppl 2), 411-420. doi:10.1590/1980-5373-mr-2017-0734 es_ES
dc.description.references Pinto, F., Costa, P., Gulyurtlu, I., & Cabrita, I. (1999). Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. Journal of Analytical and Applied Pyrolysis, 51(1-2), 39-55. doi:10.1016/s0165-2370(99)00007-8 es_ES
dc.description.references Plastics Europe, 2018. Plastics –the Facts 2018. An analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/en/resources/publications/619-plastics-facts-2018 (accessed 29 May 2019). es_ES
dc.description.references Plastics Europe, 2019a. Plastics –the Facts 2019. An analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/en/resources/publications/1804-plastics-facts-2019 (accessed 20 January 2020). es_ES
dc.description.references Plastics Europe, 2019b. The circular economy for plastics. A European overview. https://www.plasticseurope.org/en/resources/publications/1899-circular-economy-plastics-european-overview (accessed 20 January 2020). es_ES
dc.description.references Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24-58. doi:10.1016/j.wasman.2017.07.044 es_ES
dc.description.references Sağın, E. U., Böke, H., Aras, N., & Yalçın, Ş. (2011). Determination of CaCO3 and SiO2 content in the binders of historic lime mortars. Materials and Structures, 45(6), 841-849. doi:10.1617/s11527-011-9802-1 es_ES
dc.description.references Scott, R., Granchell, J., 2013. Analysis of metals content in Thermo Scientific Nalgene HDPE bottles and competitors. Application Note. Thermo Scientific. https://assets.thermofisher.com/TFS-Assets/LCD/Application-Notes/ANLSPMTLHDPEBTL-0713-HDPE-Bottle-Metal.pdf. es_ES
dc.description.references Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308-326. doi:10.1016/j.enconman.2016.02.037 es_ES
dc.description.references Singh, R. K., Ruj, B., Sadhukhan, A. K., & Gupta, P. (2019). Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism. Journal of Environmental Management, 239, 395-406. doi:10.1016/j.jenvman.2019.03.067 es_ES
dc.description.references Wang, J., 2012. PVT properties of polymers for injection molding, some critical issues for injection molding. In: Wang, J. (Ed.), Some Critical Issues for Injection Molding. IntechOpen. https://doi.org/10.5772/35212. es_ES
dc.description.references Wang, C., Wang, H., Fu, J., & Liu, Y. (2015). Flotation separation of waste plastics for recycling—A review. Waste Management, 41, 28-38. doi:10.1016/j.wasman.2015.03.027 es_ES
dc.description.references Wong, S. L., Ngadi, N., Abdullah, T. A. T., & Inuwa, I. M. (2015). Current state and future prospects of plastic waste as source of fuel: A review. Renewable and Sustainable Energy Reviews, 50, 1167-1180. doi:10.1016/j.rser.2015.04.063 es_ES
dc.description.references Wunderlich, B., 1990. Appendix – ATHAS table of thermal properties of linear macromolecules. In: Jovanovich, H.B. (Ed.), Thermal Analysis. Academic Press Inc., pp. 417–431. https://doi.org/10.1016/B978-0-12-765605-2.50012-1. es_ES
dc.description.references Yan, J., Karlsson, A., Zou, Z., Dai, D., & Edlund, U. (2020). Contamination of heavy metals and metalloids in biomass and waste fuels: Comparative characterisation and trend estimation. Science of The Total Environment, 700, 134382. doi:10.1016/j.scitotenv.2019.134382 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


This item appears in the following Collection(s)

Show simple item record