- -

Enhanced Photodegradation of Synthetic Dyes Mediated by Ag3PO4-Based Semiconductors under Visible Light Irradiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced Photodegradation of Synthetic Dyes Mediated by Ag3PO4-Based Semiconductors under Visible Light Irradiation

Mostrar el registro completo del ítem

Pavanello, A.; Blasco-Brusola, A.; Johnston, PF.; Miranda Alonso, MÁ.; Marín García, ML. (2020). Enhanced Photodegradation of Synthetic Dyes Mediated by Ag3PO4-Based Semiconductors under Visible Light Irradiation. Catalysts. 10(7):1-17. https://doi.org/10.3390/catal10070774

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164215

Ficheros en el ítem

Metadatos del ítem

Título: Enhanced Photodegradation of Synthetic Dyes Mediated by Ag3PO4-Based Semiconductors under Visible Light Irradiation
Autor: Pavanello, Alice Blasco-Brusola, Alejandro Johnston, Peter F. Miranda Alonso, Miguel Ángel Marín García, Mª Luisa
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Four silver phosphate-based materials were successfully synthesized, characterized, and evaluated, together with TiO2, in the photodegradation of synthetic dyes (tartrazine, Orange II, rhodamine, and Brilliant Blue ...[+]
Palabras clave: Conduction band , Hole , Hydroxyl radical , Mechanism , Superoxide anion , Titanium dioxide , Valence band
Derechos de uso: Reconocimiento (by)
Fuente:
Catalysts. (eissn: 2073-4344 )
DOI: 10.3390/catal10070774
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/catal10070774
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/765860/EU/Interdisciplinar cross-sectoral approach to effectively address the removal of contaminants of emerging concern from water/
info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2017%2F005/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/
Agradecimientos:
This research was funded by Spanish Government (Grant SEV-2016-0683), Generalitat Valenciana (Prometeo Program) and H2020/Marie Sklodowska-Curie Actions under the AQUAlity project (Reference: 765860). The authors would ...[+]
Tipo: Artículo

References

Boczkaj, G., & Fernandes, A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chemical Engineering Journal, 320, 608-633. doi:10.1016/j.cej.2017.03.084

Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118-131. doi:10.1016/j.watres.2018.03.042

Gągol, M., Przyjazny, A., & Boczkaj, G. (2018). Wastewater treatment by means of advanced oxidation processes based on cavitation – A review. Chemical Engineering Journal, 338, 599-627. doi:10.1016/j.cej.2018.01.049 [+]
Boczkaj, G., & Fernandes, A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chemical Engineering Journal, 320, 608-633. doi:10.1016/j.cej.2017.03.084

Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118-131. doi:10.1016/j.watres.2018.03.042

Gągol, M., Przyjazny, A., & Boczkaj, G. (2018). Wastewater treatment by means of advanced oxidation processes based on cavitation – A review. Chemical Engineering Journal, 338, 599-627. doi:10.1016/j.cej.2018.01.049

Rizzo, L. (2011). Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research, 45(15), 4311-4340. doi:10.1016/j.watres.2011.05.035

Vaiano, V., Iervolino, G., Rizzo, L., & Sannino, D. (2017). Advanced Oxidation Processes for the Removal of Food Dyes in Wastewater. Current Organic Chemistry, 21(12), 1068-1073. doi:10.2174/1385272821666170102163307

Fernández, C., Larrechi, M. S., & Callao, M. P. (2010). An analytical overview of processes for removing organic dyes from wastewater effluents. TrAC Trends in Analytical Chemistry, 29(10), 1202-1211. doi:10.1016/j.trac.2010.07.011

Gregory, P. (1986). Azo dyes: Structure-carcinogenicity relationships. Dyes and Pigments, 7(1), 45-56. doi:10.1016/0143-7208(86)87005-x

Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Applied Catalysis B: Environmental, 49(1), 1-14. doi:10.1016/j.apcatb.2003.11.010

Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21. doi:10.1016/s1389-5567(00)00002-2

Gligorovski, S., Strekowski, R., Barbati, S., & Vione, D. (2015). Environmental Implications of Hydroxyl Radicals (•OH). Chemical Reviews, 115(24), 13051-13092. doi:10.1021/cr500310b

Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108(1), 1-35. doi:10.1016/s1010-6030(97)00118-4

Han, F., Kambala, V. S. R., Srinivasan, M., Rajarathnam, D., & Naidu, R. (2009). Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Applied Catalysis A: General, 359(1-2), 25-40. doi:10.1016/j.apcata.2009.02.043

Rauf, M. A., Meetani, M. A., & Hisaindee, S. (2011). An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination, 276(1-3), 13-27. doi:10.1016/j.desal.2011.03.071

Ismael, M. (2019). Highly effective ruthenium-doped TiO2nanoparticles photocatalyst for visible-light-driven photocatalytic hydrogen production. New Journal of Chemistry, 43(24), 9596-9605. doi:10.1039/c9nj02226k

Ismael, M. (2020). Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe (III) doped TiO2 nanoparticles. Journal of Environmental Chemical Engineering, 8(2), 103676. doi:10.1016/j.jece.2020.103676

Rajeshwar, K., Osugi, M. E., Chanmanee, W., Chenthamarakshan, C. R., Zanoni, M. V. B., Kajitvichyanukul, P., & Krishnan-Ayer, R. (2008). Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(4), 171-192. doi:10.1016/j.jphotochemrev.2008.09.001

Ismael, M., Elhaddad, E., Taffa, D., & Wark, M. (2017). Synthesis of Phase Pure Hexagonal YFeO3 Perovskite as Efficient Visible Light Active Photocatalyst. Catalysts, 7(11), 326. doi:10.3390/catal7110326

Ismael, M., & Wark, M. (2019). Perovskite-type LaFeO3: Photoelectrochemical Properties and Photocatalytic Degradation of Organic Pollutants Under Visible Light Irradiation. Catalysts, 9(4), 342. doi:10.3390/catal9040342

Yi, Z., Ye, J., Kikugawa, N., Kako, T., Ouyang, S., Stuart-Williams, H., … Withers, R. L. (2010). An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nature Materials, 9(7), 559-564. doi:10.1038/nmat2780

Bi, Y., Ouyang, S., Umezawa, N., Cao, J., & Ye, J. (2011). Facet Effect of Single-Crystalline Ag3PO4 Sub-microcrystals on Photocatalytic Properties. Journal of the American Chemical Society, 133(17), 6490-6492. doi:10.1021/ja2002132

Jinfeng, Z., & Tao, Z. (2013). Preparation and Characterization of Highly Efficient and Stable Visible-Light-Responsive Photocatalyst AgBr/Ag3PO4. Journal of Nanomaterials, 2013, 1-11. doi:10.1155/2013/565074

Wardman, P. (1989). Reduction Potentials of One‐Electron Couples Involving Free Radicals in Aqueous Solution. Journal of Physical and Chemical Reference Data, 18(4), 1637-1755. doi:10.1063/1.555843

Pitre, S. P., McTiernan, C. D., & Scaiano, J. C. (2016). Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives. Accounts of Chemical Research, 49(6), 1320-1330. doi:10.1021/acs.accounts.6b00012

Cao, J., Luo, B., Lin, H., Xu, B., & Chen, S. (2012). Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange. Journal of Hazardous Materials, 217-218, 107-115. doi:10.1016/j.jhazmat.2012.03.002

Ge, M., Zhu, N., Zhao, Y., Li, J., & Liu, L. (2012). Sunlight-Assisted Degradation of Dye Pollutants in Ag3PO4 Suspension. Industrial & Engineering Chemistry Research, 51(14), 5167-5173. doi:10.1021/ie202864n

Ge, M. (2014). Photodegradation of rhodamine B and methyl orange by Ag3PO4 catalyst under visible light irradiation. Chinese Journal of Catalysis, 35(8), 1410-1417. doi:10.1016/s1872-2067(14)60079-6

Qamar, M., Elsayed, R. B., Alhooshani, K. R., Ahmed, M. I., & Bahnemann, D. W. (2015). Chemoselective and highly efficient conversion of aromatic alcohols into aldehydes photo-catalyzed by Ag3PO4 in aqueous suspension under simulated sunlight. Catalysis Communications, 58, 34-39. doi:10.1016/j.catcom.2014.08.025

Taheri, M. E., Petala, A., Frontistis, Z., Mantzavinos, D., & Kondarides, D. I. (2017). Fast photocatalytic degradation of bisphenol A by Ag 3 PO 4 /TiO 2 composites under solar radiation. Catalysis Today, 280, 99-107. doi:10.1016/j.cattod.2016.05.047

Li, X., Xu, P., Chen, M., Zeng, G., Wang, D., Chen, F., … Tan, X. (2019). Application of silver phosphate-based photocatalysts: Barriers and solutions. Chemical Engineering Journal, 366, 339-357. doi:10.1016/j.cej.2019.02.083

Zwara, J., Grabowska, E., Klimczuk, T., Lisowski, W., & Zaleska-Medynska, A. (2018). Shape-dependent enhanced photocatalytic effect under visible light of Ag3PO4 particles. Journal of Photochemistry and Photobiology A: Chemistry, 367, 240-252. doi:10.1016/j.jphotochem.2018.08.006

Petala, A., Spyrou, D., Frontistis, Z., Mantzavinos, D., & Kondarides, D. I. (2019). Immobilized Ag3PO4 photocatalyst for micro-pollutants removal in a continuous flow annular photoreactor. Catalysis Today, 328, 223-229. doi:10.1016/j.cattod.2018.10.062

Cruz-Filho, J. F., Costa, T. M. S., Lima, M. S., Silva, L. J., Santos, R. S., Cavalcante, L. S., … Luz, G. E. (2019). Effect of different synthesis methods on the morphology, optical behavior, and superior photocatalytic performances of Ag3PO4 sub-microcrystals using white-light-emitting diodes. Journal of Photochemistry and Photobiology A: Chemistry, 377, 14-25. doi:10.1016/j.jphotochem.2019.03.031

Zhu, C., Li, Y., Yang, Y., Chen, Y., Yang, Z., Wang, P., & Feng, W. (2020). Influence of operational parameters on photocatalytic decolorization of a cationic azo dye under visible-light in aqueous Ag3PO4. Inorganic Chemistry Communications, 115, 107850. doi:10.1016/j.inoche.2020.107850

Raza, N., Raza, W., Gul, H., Azam, M., Lee, J., Vikrant, K., & Kim, K.-H. (2020). Solar-light-active silver phosphate/titanium dioxide/silica heterostructures for photocatalytic removal of organic dye. Journal of Cleaner Production, 254, 120031. doi:10.1016/j.jclepro.2020.120031

Tab, A., Bellal, B., Belabed, C., Dahmane, M., & Trari, M. (2020). Visible light assisted photocatalytic degradation and mineralization of Rhodamine B in aqueous solution by Ag3PO4. Optik, 214, 164858. doi:10.1016/j.ijleo.2020.164858

Hamrouni, A., Azzouzi, H., Rayes, A., Palmisano, L., Ceccato, R., & Parrino, F. (2020). Enhanced Solar Light Photocatalytic Activity of Ag Doped TiO2–Ag3PO4 Composites. Nanomaterials, 10(4), 795. doi:10.3390/nano10040795

Rawal, S. B., Sung, S. D., & Lee, W. I. (2012). Novel Ag3PO4/TiO2 composites for efficient decomposition of gaseous 2-propanol under visible-light irradiation. Catalysis Communications, 17, 131-135. doi:10.1016/j.catcom.2011.10.034

Ma, J., Zou, J., Li, L., Yao, C., Zhang, T., & Li, D. (2013). Synthesis and characterization of Ag3PO4 immobilized in bentonite for the sunlight-driven degradation of Orange II. Applied Catalysis B: Environmental, 134-135, 1-6. doi:10.1016/j.apcatb.2012.12.032

Trasatti, S. (1986). The absolute electrode potential: an explanatory note (Recommendations 1986). Pure and Applied Chemistry, 58(7), 955-966. doi:10.1351/pac198658070955

Ahmad, I., Murtaza, S., & Ahmed, S. (2015). Electrochemical and photovoltaic study of sunset yellow and tartrazine dyes. Monatshefte für Chemie - Chemical Monthly, 146(10), 1631-1640. doi:10.1007/s00706-015-1425-8

Ghoreishi, S. M., Behpour, M., & Golestaneh, M. (2011). Simultaneous voltammetric determination of Brilliant Blue and Tartrazine in real samples at the surface of a multi-walled carbon nanotube paste electrode. Analytical Methods, 3(12), 2842. doi:10.1039/c1ay05327b

Taniguchi, M., & Lindsey, J. S. (2018). Database of Absorption and Fluorescence Spectra of >300 Common Compounds for use in Photochem CAD. Photochemistry and Photobiology, 94(2), 290-327. doi:10.1111/php.12860

Vinodgopal, K., Wynkoop, D. E., & Kamat, P. V. (1996). Environmental Photochemistry on Semiconductor Surfaces:  Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO2 Particles Using Visible Light. Environmental Science & Technology, 30(5), 1660-1666. doi:10.1021/es950655d

Vinodgopal, K., & Kamat, P. V. (1994). Photochemistry of textile azo dyes. Spectral characterization of excited state, reduced and oxidized forms of Acid Orange 7. Journal of Photochemistry and Photobiology A: Chemistry, 83(2), 141-146. doi:10.1016/1010-6030(94)03810-4

Romero, N. A., & Nicewicz, D. A. (2016). Organic Photoredox Catalysis. Chemical Reviews, 116(17), 10075-10166. doi:10.1021/acs.chemrev.6b00057

Chebotarev, A. N., Bevziuk, K. V., Snigur, D. V., & Bazel, Y. R. (2017). The brilliant blue FCF ion-molecular forms in solutions according to the spectrophotometry data. Russian Journal of Physical Chemistry A, 91(10), 1907-1912. doi:10.1134/s0036024417100089

Yao, W., Zhang, B., Huang, C., Ma, C., Song, X., & Xu, Q. (2012). Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. Journal of Materials Chemistry, 22(9), 4050. doi:10.1039/c2jm14410g

Molla, M. A. I., Tateishi, I., Furukawa, M., Katsumata, H., Suzuki, T., & Kaneco, S. (2017). Photocatalytic Decolorization of Dye with Self-Dye-Sensitization under Fluorescent Light Irradiation. ChemEngineering, 1(2), 8. doi:10.3390/chemengineering1020008

Baiocchi, C., Brussino, M. C., Pramauro, E., Prevot, A. B., Palmisano, L., & Marcı̀, G. (2002). Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV–VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry. International Journal of Mass Spectrometry, 214(2), 247-256. doi:10.1016/s1387-3806(01)00590-5

Liu, R., Hu, P., & Chen, S. (2012). Photocatalytic activity of Ag3PO4 nanoparticle/TiO2 nanobelt heterostructures. Applied Surface Science, 258(24), 9805-9809. doi:10.1016/j.apsusc.2012.06.033

Wang, P., Li, Y., Liu, Z., Chen, J., Wu, Y., Guo, M., & Na, P. (2017). In-situ deposition of Ag3PO4 on TiO2 nanosheets dominated by (001) facets for enhanced photocatalytic activities and recyclability. Ceramics International, 43(15), 11588-11595. doi:10.1016/j.ceramint.2017.05.178

Kim, W. J., Pradhan, D., Min, B.-K., & Sohn, Y. (2014). Adsorption/photocatalytic activity and fundamental natures of BiOCl and BiOClxI1−x prepared in water and ethylene glycol environments, and Ag and Au-doping effects. Applied Catalysis B: Environmental, 147, 711-725. doi:10.1016/j.apcatb.2013.10.008

Cao, J., Luo, B., Lin, H., & Chen, S. (2011). Synthesis, characterization and photocatalytic activity of AgBr/H2WO4 composite photocatalyst. Journal of Molecular Catalysis A: Chemical, 344(1-2), 138-144. doi:10.1016/j.molcata.2011.05.012

Ishibashi, K., Fujishima, A., Watanabe, T., & Hashimoto, K. (2000). Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochemistry Communications, 2(3), 207-210. doi:10.1016/s1388-2481(00)00006-0

Xiao, Q., Si, Z., Zhang, J., Xiao, C., & Tan, X. (2008). Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. Journal of Hazardous Materials, 150(1), 62-67. doi:10.1016/j.jhazmat.2007.04.045

Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004

Reszka, K., & Chignell, C. F. (1983). SPECTROSCOPIC STUDIES OF CUTANEOUS PHOTOSENSITIZING AGENTS—IV. THE PHOTOLYSIS OF BENOXAPROFEN, AN ANTI-INFLAMMATORY DRUG WITH PHOTOTOXIC PROPERTIES. Photochemistry and Photobiology, 38(3), 281-291. doi:10.1111/j.1751-1097.1983.tb02673.x

Burns, J. M., Cooper, W. J., Ferry, J. L., King, D. W., DiMento, B. P., McNeill, K., … Waite, T. D. (2012). Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquatic Sciences, 74(4), 683-734. doi:10.1007/s00027-012-0251-x

Zhang, D., Yan, S., & Song, W. (2014). Photochemically Induced Formation of Reactive Oxygen Species (ROS) from Effluent Organic Matter. Environmental Science & Technology, 48(21), 12645-12653. doi:10.1021/es5028663

Hayyan, M., Hashim, M. A., & AlNashef, I. M. (2016). Superoxide Ion: Generation and Chemical Implications. Chemical Reviews, 116(5), 3029-3085. doi:10.1021/acs.chemrev.5b00407

D., N., Kondamareddy, K. K., Bin, H., Lu, D., Kumar, P., Dwivedi, R. K., … Fu, D. (2018). Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe-Cd co-modified ZnO. Scientific Reports, 8(1). doi:10.1038/s41598-018-29025-1

Bi, Y., Ouyang, S., Cao, J., & Ye, J. (2011). Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. Physical Chemistry Chemical Physics, 13(21), 10071. doi:10.1039/c1cp20488b

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem