- -

Enhanced Photodegradation of Synthetic Dyes Mediated by Ag3PO4-Based Semiconductors under Visible Light Irradiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced Photodegradation of Synthetic Dyes Mediated by Ag3PO4-Based Semiconductors under Visible Light Irradiation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pavanello, Alice es_ES
dc.contributor.author Blasco-Brusola, Alejandro es_ES
dc.contributor.author Johnston, Peter F. es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Marín García, Mª Luisa es_ES
dc.date.accessioned 2021-03-25T04:31:25Z
dc.date.available 2021-03-25T04:31:25Z
dc.date.issued 2020-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164215
dc.description.abstract [EN] Four silver phosphate-based materials were successfully synthesized, characterized, and evaluated, together with TiO2, in the photodegradation of synthetic dyes (tartrazine, Orange II, rhodamine, and Brilliant Blue FCF) under two irradiation sources centered at 420 and 450 nm. Scanning Electron Microscopy (SEM) images showed different topologies of the synthesized materials, whereas diffuse reflectance spectra demonstrated that they display absorption up to 500 nm. Degradation experiments were performed in parallel with the silver materials and TiO2. Upon irradiation centered at 420 nm, the abatement of the dyes was slightly more efficient in the case of TiO2-except for Orange II. Nevertheless, upon irradiation centered at 450 nm, TiO(2)demonstrated complete inefficiency and silver phosphates accomplished the complete abatement of the dyes-except for Brilliant Blue FCF. A careful analysis of the achieved degradation of dyes revealed that the main reaction mechanism involves electron transfer to the photogenerated holes in the valence band of silver photocatalysts, together with the direct excitation of dyes and the subsequent formation of reactive species. The performance of TiO(2)was only comparable at the shorter wavelength when hydroxyl radicals could be formed; however, it could not compete under irradiation at 450 nm since the formed superoxide anion is not as reactive as hydroxyl radicals. es_ES
dc.description.sponsorship This research was funded by Spanish Government (Grant SEV-2016-0683), Generalitat Valenciana (Prometeo Program) and H2020/Marie Sklodowska-Curie Actions under the AQUAlity project (Reference: 765860). The authors would like to acknowledge H2020/Marie Sk¿odowska-Curie Actions under the AQUAlity project (Reference: 765860). Consellería d¿Educació, Investigació, Cultura i Esport (PROMETEO/2017/075 and GRISOLÍAP/2017/005) is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Catalysts es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Conduction band es_ES
dc.subject Hole es_ES
dc.subject Hydroxyl radical es_ES
dc.subject Mechanism es_ES
dc.subject Superoxide anion es_ES
dc.subject Titanium dioxide es_ES
dc.subject Valence band es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Enhanced Photodegradation of Synthetic Dyes Mediated by Ag3PO4-Based Semiconductors under Visible Light Irradiation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/catal10070774 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/765860/EU/Interdisciplinar cross-sectoral approach to effectively address the removal of contaminants of emerging concern from water/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2017%2F005/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Pavanello, A.; Blasco-Brusola, A.; Johnston, PF.; Miranda Alonso, MÁ.; Marín García, ML. (2020). Enhanced Photodegradation of Synthetic Dyes Mediated by Ag3PO4-Based Semiconductors under Visible Light Irradiation. Catalysts. 10(7):1-17. https://doi.org/10.3390/catal10070774 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/catal10070774 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2073-4344 es_ES
dc.relation.pasarela S\416310 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Boczkaj, G., & Fernandes, A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chemical Engineering Journal, 320, 608-633. doi:10.1016/j.cej.2017.03.084 es_ES
dc.description.references Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118-131. doi:10.1016/j.watres.2018.03.042 es_ES
dc.description.references Gągol, M., Przyjazny, A., & Boczkaj, G. (2018). Wastewater treatment by means of advanced oxidation processes based on cavitation – A review. Chemical Engineering Journal, 338, 599-627. doi:10.1016/j.cej.2018.01.049 es_ES
dc.description.references Rizzo, L. (2011). Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research, 45(15), 4311-4340. doi:10.1016/j.watres.2011.05.035 es_ES
dc.description.references Vaiano, V., Iervolino, G., Rizzo, L., & Sannino, D. (2017). Advanced Oxidation Processes for the Removal of Food Dyes in Wastewater. Current Organic Chemistry, 21(12), 1068-1073. doi:10.2174/1385272821666170102163307 es_ES
dc.description.references Fernández, C., Larrechi, M. S., & Callao, M. P. (2010). An analytical overview of processes for removing organic dyes from wastewater effluents. TrAC Trends in Analytical Chemistry, 29(10), 1202-1211. doi:10.1016/j.trac.2010.07.011 es_ES
dc.description.references Gregory, P. (1986). Azo dyes: Structure-carcinogenicity relationships. Dyes and Pigments, 7(1), 45-56. doi:10.1016/0143-7208(86)87005-x es_ES
dc.description.references Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Applied Catalysis B: Environmental, 49(1), 1-14. doi:10.1016/j.apcatb.2003.11.010 es_ES
dc.description.references Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21. doi:10.1016/s1389-5567(00)00002-2 es_ES
dc.description.references Gligorovski, S., Strekowski, R., Barbati, S., & Vione, D. (2015). Environmental Implications of Hydroxyl Radicals (•OH). Chemical Reviews, 115(24), 13051-13092. doi:10.1021/cr500310b es_ES
dc.description.references Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108(1), 1-35. doi:10.1016/s1010-6030(97)00118-4 es_ES
dc.description.references Han, F., Kambala, V. S. R., Srinivasan, M., Rajarathnam, D., & Naidu, R. (2009). Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Applied Catalysis A: General, 359(1-2), 25-40. doi:10.1016/j.apcata.2009.02.043 es_ES
dc.description.references Rauf, M. A., Meetani, M. A., & Hisaindee, S. (2011). An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination, 276(1-3), 13-27. doi:10.1016/j.desal.2011.03.071 es_ES
dc.description.references Ismael, M. (2019). Highly effective ruthenium-doped TiO2nanoparticles photocatalyst for visible-light-driven photocatalytic hydrogen production. New Journal of Chemistry, 43(24), 9596-9605. doi:10.1039/c9nj02226k es_ES
dc.description.references Ismael, M. (2020). Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe (III) doped TiO2 nanoparticles. Journal of Environmental Chemical Engineering, 8(2), 103676. doi:10.1016/j.jece.2020.103676 es_ES
dc.description.references Rajeshwar, K., Osugi, M. E., Chanmanee, W., Chenthamarakshan, C. R., Zanoni, M. V. B., Kajitvichyanukul, P., & Krishnan-Ayer, R. (2008). Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(4), 171-192. doi:10.1016/j.jphotochemrev.2008.09.001 es_ES
dc.description.references Ismael, M., Elhaddad, E., Taffa, D., & Wark, M. (2017). Synthesis of Phase Pure Hexagonal YFeO3 Perovskite as Efficient Visible Light Active Photocatalyst. Catalysts, 7(11), 326. doi:10.3390/catal7110326 es_ES
dc.description.references Ismael, M., & Wark, M. (2019). Perovskite-type LaFeO3: Photoelectrochemical Properties and Photocatalytic Degradation of Organic Pollutants Under Visible Light Irradiation. Catalysts, 9(4), 342. doi:10.3390/catal9040342 es_ES
dc.description.references Yi, Z., Ye, J., Kikugawa, N., Kako, T., Ouyang, S., Stuart-Williams, H., … Withers, R. L. (2010). An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nature Materials, 9(7), 559-564. doi:10.1038/nmat2780 es_ES
dc.description.references Bi, Y., Ouyang, S., Umezawa, N., Cao, J., & Ye, J. (2011). Facet Effect of Single-Crystalline Ag3PO4 Sub-microcrystals on Photocatalytic Properties. Journal of the American Chemical Society, 133(17), 6490-6492. doi:10.1021/ja2002132 es_ES
dc.description.references Jinfeng, Z., & Tao, Z. (2013). Preparation and Characterization of Highly Efficient and Stable Visible-Light-Responsive Photocatalyst AgBr/Ag3PO4. Journal of Nanomaterials, 2013, 1-11. doi:10.1155/2013/565074 es_ES
dc.description.references Wardman, P. (1989). Reduction Potentials of One‐Electron Couples Involving Free Radicals in Aqueous Solution. Journal of Physical and Chemical Reference Data, 18(4), 1637-1755. doi:10.1063/1.555843 es_ES
dc.description.references Pitre, S. P., McTiernan, C. D., & Scaiano, J. C. (2016). Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives. Accounts of Chemical Research, 49(6), 1320-1330. doi:10.1021/acs.accounts.6b00012 es_ES
dc.description.references Cao, J., Luo, B., Lin, H., Xu, B., & Chen, S. (2012). Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange. Journal of Hazardous Materials, 217-218, 107-115. doi:10.1016/j.jhazmat.2012.03.002 es_ES
dc.description.references Ge, M., Zhu, N., Zhao, Y., Li, J., & Liu, L. (2012). Sunlight-Assisted Degradation of Dye Pollutants in Ag3PO4 Suspension. Industrial & Engineering Chemistry Research, 51(14), 5167-5173. doi:10.1021/ie202864n es_ES
dc.description.references Ge, M. (2014). Photodegradation of rhodamine B and methyl orange by Ag3PO4 catalyst under visible light irradiation. Chinese Journal of Catalysis, 35(8), 1410-1417. doi:10.1016/s1872-2067(14)60079-6 es_ES
dc.description.references Qamar, M., Elsayed, R. B., Alhooshani, K. R., Ahmed, M. I., & Bahnemann, D. W. (2015). Chemoselective and highly efficient conversion of aromatic alcohols into aldehydes photo-catalyzed by Ag3PO4 in aqueous suspension under simulated sunlight. Catalysis Communications, 58, 34-39. doi:10.1016/j.catcom.2014.08.025 es_ES
dc.description.references Taheri, M. E., Petala, A., Frontistis, Z., Mantzavinos, D., & Kondarides, D. I. (2017). Fast photocatalytic degradation of bisphenol A by Ag 3 PO 4 /TiO 2 composites under solar radiation. Catalysis Today, 280, 99-107. doi:10.1016/j.cattod.2016.05.047 es_ES
dc.description.references Li, X., Xu, P., Chen, M., Zeng, G., Wang, D., Chen, F., … Tan, X. (2019). Application of silver phosphate-based photocatalysts: Barriers and solutions. Chemical Engineering Journal, 366, 339-357. doi:10.1016/j.cej.2019.02.083 es_ES
dc.description.references Zwara, J., Grabowska, E., Klimczuk, T., Lisowski, W., & Zaleska-Medynska, A. (2018). Shape-dependent enhanced photocatalytic effect under visible light of Ag3PO4 particles. Journal of Photochemistry and Photobiology A: Chemistry, 367, 240-252. doi:10.1016/j.jphotochem.2018.08.006 es_ES
dc.description.references Petala, A., Spyrou, D., Frontistis, Z., Mantzavinos, D., & Kondarides, D. I. (2019). Immobilized Ag3PO4 photocatalyst for micro-pollutants removal in a continuous flow annular photoreactor. Catalysis Today, 328, 223-229. doi:10.1016/j.cattod.2018.10.062 es_ES
dc.description.references Cruz-Filho, J. F., Costa, T. M. S., Lima, M. S., Silva, L. J., Santos, R. S., Cavalcante, L. S., … Luz, G. E. (2019). Effect of different synthesis methods on the morphology, optical behavior, and superior photocatalytic performances of Ag3PO4 sub-microcrystals using white-light-emitting diodes. Journal of Photochemistry and Photobiology A: Chemistry, 377, 14-25. doi:10.1016/j.jphotochem.2019.03.031 es_ES
dc.description.references Zhu, C., Li, Y., Yang, Y., Chen, Y., Yang, Z., Wang, P., & Feng, W. (2020). Influence of operational parameters on photocatalytic decolorization of a cationic azo dye under visible-light in aqueous Ag3PO4. Inorganic Chemistry Communications, 115, 107850. doi:10.1016/j.inoche.2020.107850 es_ES
dc.description.references Raza, N., Raza, W., Gul, H., Azam, M., Lee, J., Vikrant, K., & Kim, K.-H. (2020). Solar-light-active silver phosphate/titanium dioxide/silica heterostructures for photocatalytic removal of organic dye. Journal of Cleaner Production, 254, 120031. doi:10.1016/j.jclepro.2020.120031 es_ES
dc.description.references Tab, A., Bellal, B., Belabed, C., Dahmane, M., & Trari, M. (2020). Visible light assisted photocatalytic degradation and mineralization of Rhodamine B in aqueous solution by Ag3PO4. Optik, 214, 164858. doi:10.1016/j.ijleo.2020.164858 es_ES
dc.description.references Hamrouni, A., Azzouzi, H., Rayes, A., Palmisano, L., Ceccato, R., & Parrino, F. (2020). Enhanced Solar Light Photocatalytic Activity of Ag Doped TiO2–Ag3PO4 Composites. Nanomaterials, 10(4), 795. doi:10.3390/nano10040795 es_ES
dc.description.references Rawal, S. B., Sung, S. D., & Lee, W. I. (2012). Novel Ag3PO4/TiO2 composites for efficient decomposition of gaseous 2-propanol under visible-light irradiation. Catalysis Communications, 17, 131-135. doi:10.1016/j.catcom.2011.10.034 es_ES
dc.description.references Ma, J., Zou, J., Li, L., Yao, C., Zhang, T., & Li, D. (2013). Synthesis and characterization of Ag3PO4 immobilized in bentonite for the sunlight-driven degradation of Orange II. Applied Catalysis B: Environmental, 134-135, 1-6. doi:10.1016/j.apcatb.2012.12.032 es_ES
dc.description.references Trasatti, S. (1986). The absolute electrode potential: an explanatory note (Recommendations 1986). Pure and Applied Chemistry, 58(7), 955-966. doi:10.1351/pac198658070955 es_ES
dc.description.references Ahmad, I., Murtaza, S., & Ahmed, S. (2015). Electrochemical and photovoltaic study of sunset yellow and tartrazine dyes. Monatshefte für Chemie - Chemical Monthly, 146(10), 1631-1640. doi:10.1007/s00706-015-1425-8 es_ES
dc.description.references Ghoreishi, S. M., Behpour, M., & Golestaneh, M. (2011). Simultaneous voltammetric determination of Brilliant Blue and Tartrazine in real samples at the surface of a multi-walled carbon nanotube paste electrode. Analytical Methods, 3(12), 2842. doi:10.1039/c1ay05327b es_ES
dc.description.references Taniguchi, M., & Lindsey, J. S. (2018). Database of Absorption and Fluorescence Spectra of >300 Common Compounds for use in Photochem CAD. Photochemistry and Photobiology, 94(2), 290-327. doi:10.1111/php.12860 es_ES
dc.description.references Vinodgopal, K., Wynkoop, D. E., & Kamat, P. V. (1996). Environmental Photochemistry on Semiconductor Surfaces:  Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO2 Particles Using Visible Light. Environmental Science & Technology, 30(5), 1660-1666. doi:10.1021/es950655d es_ES
dc.description.references Vinodgopal, K., & Kamat, P. V. (1994). Photochemistry of textile azo dyes. Spectral characterization of excited state, reduced and oxidized forms of Acid Orange 7. Journal of Photochemistry and Photobiology A: Chemistry, 83(2), 141-146. doi:10.1016/1010-6030(94)03810-4 es_ES
dc.description.references Romero, N. A., & Nicewicz, D. A. (2016). Organic Photoredox Catalysis. Chemical Reviews, 116(17), 10075-10166. doi:10.1021/acs.chemrev.6b00057 es_ES
dc.description.references Chebotarev, A. N., Bevziuk, K. V., Snigur, D. V., & Bazel, Y. R. (2017). The brilliant blue FCF ion-molecular forms in solutions according to the spectrophotometry data. Russian Journal of Physical Chemistry A, 91(10), 1907-1912. doi:10.1134/s0036024417100089 es_ES
dc.description.references Yao, W., Zhang, B., Huang, C., Ma, C., Song, X., & Xu, Q. (2012). Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. Journal of Materials Chemistry, 22(9), 4050. doi:10.1039/c2jm14410g es_ES
dc.description.references Molla, M. A. I., Tateishi, I., Furukawa, M., Katsumata, H., Suzuki, T., & Kaneco, S. (2017). Photocatalytic Decolorization of Dye with Self-Dye-Sensitization under Fluorescent Light Irradiation. ChemEngineering, 1(2), 8. doi:10.3390/chemengineering1020008 es_ES
dc.description.references Baiocchi, C., Brussino, M. C., Pramauro, E., Prevot, A. B., Palmisano, L., & Marcı̀, G. (2002). Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV–VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry. International Journal of Mass Spectrometry, 214(2), 247-256. doi:10.1016/s1387-3806(01)00590-5 es_ES
dc.description.references Liu, R., Hu, P., & Chen, S. (2012). Photocatalytic activity of Ag3PO4 nanoparticle/TiO2 nanobelt heterostructures. Applied Surface Science, 258(24), 9805-9809. doi:10.1016/j.apsusc.2012.06.033 es_ES
dc.description.references Wang, P., Li, Y., Liu, Z., Chen, J., Wu, Y., Guo, M., & Na, P. (2017). In-situ deposition of Ag3PO4 on TiO2 nanosheets dominated by (001) facets for enhanced photocatalytic activities and recyclability. Ceramics International, 43(15), 11588-11595. doi:10.1016/j.ceramint.2017.05.178 es_ES
dc.description.references Kim, W. J., Pradhan, D., Min, B.-K., & Sohn, Y. (2014). Adsorption/photocatalytic activity and fundamental natures of BiOCl and BiOClxI1−x prepared in water and ethylene glycol environments, and Ag and Au-doping effects. Applied Catalysis B: Environmental, 147, 711-725. doi:10.1016/j.apcatb.2013.10.008 es_ES
dc.description.references Cao, J., Luo, B., Lin, H., & Chen, S. (2011). Synthesis, characterization and photocatalytic activity of AgBr/H2WO4 composite photocatalyst. Journal of Molecular Catalysis A: Chemical, 344(1-2), 138-144. doi:10.1016/j.molcata.2011.05.012 es_ES
dc.description.references Ishibashi, K., Fujishima, A., Watanabe, T., & Hashimoto, K. (2000). Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochemistry Communications, 2(3), 207-210. doi:10.1016/s1388-2481(00)00006-0 es_ES
dc.description.references Xiao, Q., Si, Z., Zhang, J., Xiao, C., & Tan, X. (2008). Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. Journal of Hazardous Materials, 150(1), 62-67. doi:10.1016/j.jhazmat.2007.04.045 es_ES
dc.description.references Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004 es_ES
dc.description.references Reszka, K., & Chignell, C. F. (1983). SPECTROSCOPIC STUDIES OF CUTANEOUS PHOTOSENSITIZING AGENTS—IV. THE PHOTOLYSIS OF BENOXAPROFEN, AN ANTI-INFLAMMATORY DRUG WITH PHOTOTOXIC PROPERTIES. Photochemistry and Photobiology, 38(3), 281-291. doi:10.1111/j.1751-1097.1983.tb02673.x es_ES
dc.description.references Burns, J. M., Cooper, W. J., Ferry, J. L., King, D. W., DiMento, B. P., McNeill, K., … Waite, T. D. (2012). Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquatic Sciences, 74(4), 683-734. doi:10.1007/s00027-012-0251-x es_ES
dc.description.references Zhang, D., Yan, S., & Song, W. (2014). Photochemically Induced Formation of Reactive Oxygen Species (ROS) from Effluent Organic Matter. Environmental Science & Technology, 48(21), 12645-12653. doi:10.1021/es5028663 es_ES
dc.description.references Hayyan, M., Hashim, M. A., & AlNashef, I. M. (2016). Superoxide Ion: Generation and Chemical Implications. Chemical Reviews, 116(5), 3029-3085. doi:10.1021/acs.chemrev.5b00407 es_ES
dc.description.references D., N., Kondamareddy, K. K., Bin, H., Lu, D., Kumar, P., Dwivedi, R. K., … Fu, D. (2018). Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe-Cd co-modified ZnO. Scientific Reports, 8(1). doi:10.1038/s41598-018-29025-1 es_ES
dc.description.references Bi, Y., Ouyang, S., Cao, J., & Ye, J. (2011). Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. Physical Chemistry Chemical Physics, 13(21), 10071. doi:10.1039/c1cp20488b es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem