- -

Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates

Mostrar el registro completo del ítem

Lineros-Rosa, M.; Francés-Monerris, A.; Monari, A.; Miranda Alonso, MÁ.; Lhiaubet, VL. (2020). Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates. Physical Chemistry Chemical Physics. 22(44):25661-25668. https://doi.org/10.1039/d0cp04557h

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164220

Ficheros en el ítem

Metadatos del ítem

Título: Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates
Autor: Lineros-Rosa, Mauricio Francés-Monerris, Antonio Monari, Antonio Miranda Alonso, Miguel Ángel Lhiaubet, Virginie Lyria
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Interaction of nucleic acids with light is a scientific question of paramount relevance not only in the understanding of life functioning and evolution, but also in the insurgence of diseases such as malignant skin ...[+]
Palabras clave: Triplet energy-transfer , Dimer formation , Damage , Photosensitization , Dynamics , Photophysics , Dimerization , Mechanism , Bases
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Chemistry Chemical Physics. (issn: 1463-9076 )
DOI: 10.1039/d0cp04557h
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/d0cp04557h
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87054-C2-2-P/ES/FOTOFISICA DE SISTEMAS ORGANICOS DE TRANSFERENCIA DE CARGA INNOVADORES/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096684-B-I00/ES/REPARACION DEL ADN POR PROCESOS MULTIFOTONICOS/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F149/
info:eu-repo/grantAgreement/GVA//GV%2F2020%2F226/
Agradecimientos:
Support from the Universite de Lorraine, CNRS, regional (Prometeo/2017/075) and Spanish Government (PGC2018-096684-B-I00, CTQ2017-87054-C2-2-P) is kindly acknowledged. A. F.-M. is grateful to Generalitat Valenciana and the ...[+]
Tipo: Artículo

References

Crespo-Hernández, C. E., Cohen, B., Hare, P. M., & Kohler, B. (2004). Ultrafast Excited-State Dynamics in Nucleic Acids. Chemical Reviews, 104(4), 1977-2020. doi:10.1021/cr0206770

Improta, R., Santoro, F., & Blancafort, L. (2016). Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chemical Reviews, 116(6), 3540-3593. doi:10.1021/acs.chemrev.5b00444

Sage, E., Girard, P.-M., & Francesconi, S. (2012). Unravelling UVA-induced mutagenesis. Photochem. Photobiol. Sci., 11(1), 74-80. doi:10.1039/c1pp05219e [+]
Crespo-Hernández, C. E., Cohen, B., Hare, P. M., & Kohler, B. (2004). Ultrafast Excited-State Dynamics in Nucleic Acids. Chemical Reviews, 104(4), 1977-2020. doi:10.1021/cr0206770

Improta, R., Santoro, F., & Blancafort, L. (2016). Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chemical Reviews, 116(6), 3540-3593. doi:10.1021/acs.chemrev.5b00444

Sage, E., Girard, P.-M., & Francesconi, S. (2012). Unravelling UVA-induced mutagenesis. Photochem. Photobiol. Sci., 11(1), 74-80. doi:10.1039/c1pp05219e

Francés-Monerris, A., Gattuso, H., Roca-Sanjuán, D., Tuñón, I., Marazzi, M., Dumont, E., & Monari, A. (2018). Dynamics of the excited-state hydrogen transfer in a (dG)·(dC) homopolymer: intrinsic photostability of DNA. Chemical Science, 9(41), 7902-7911. doi:10.1039/c8sc03252a

Zhang, Y., de La Harpe, K., Beckstead, A. A., Improta, R., & Kohler, B. (2015). UV-Induced Proton Transfer between DNA Strands. Journal of the American Chemical Society, 137(22), 7059-7062. doi:10.1021/jacs.5b03914

Zhang, Y., Li, X.-B., Fleming, A. M., Dood, J., Beckstead, A. A., Orendt, A. M., … Kohler, B. (2016). UV-Induced Proton-Coupled Electron Transfer in Cyclic DNA Miniduplexes. Journal of the American Chemical Society, 138(23), 7395-7401. doi:10.1021/jacs.6b03216

Bucher, D. B., Schlueter, A., Carell, T., & Zinth, W. (2014). Watson-Crick Base Pairing Controls Excited-State Decay in Natural DNA. Angewandte Chemie International Edition, 53(42), 11366-11369. doi:10.1002/anie.201406286

Röttger, K., Marroux, H. J. B., Grubb, M. P., Coulter, P. M., Böhnke, H., Henderson, A. S., … Roberts, G. M. (2015). Ultraviolet Absorption Induces Hydrogen‐Atom Transfer in G⋅C Watson–Crick DNA Base Pairs in Solution. Angewandte Chemie International Edition, 54(49), 14719-14722. doi:10.1002/anie.201506940

Nogueira, J. J., Plasser, F., & González, L. (2017). Electronic delocalization, charge transfer and hypochromism in the UV absorption spectrum of polyadenine unravelled by multiscale computations and quantitative wavefunction analysis. Chemical Science, 8(8), 5682-5691. doi:10.1039/c7sc01600j

Barbatti, M., Aquino, A. J. A., Szymczak, J. J., Nachtigallova, D., Hobza, P., & Lischka, H. (2010). Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Proceedings of the National Academy of Sciences, 107(50), 21453-21458. doi:10.1073/pnas.1014982107

Reiter, S., Keefer, D., & de Vivie-Riedle, R. (2018). RNA Environment Is Responsible for Decreased Photostability of Uracil. Journal of the American Chemical Society, 140(28), 8714-8720. doi:10.1021/jacs.8b02962

Cuquerella, M. C., Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2011). Photosensitised pyrimidine dimerisation in DNA. Chemical Science, 2(7), 1219. doi:10.1039/c1sc00088h

Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences, 103(37), 13765-13770. doi:10.1073/pnas.0604213103

Ikehata, H., Mori, T., Kamei, Y., Douki, T., Cadet, J., & Yamamoto, M. (2019). Wavelength‐ and Tissue‐dependent Variations in the Mutagenicity of Cyclobutane Pyrimidine Dimers in Mouse Skin. Photochemistry and Photobiology, 96(1), 94-104. doi:10.1111/php.13159

Pfeifer, G. P., & Besaratinia, A. (2012). UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem. Photobiol. Sci., 11(1), 90-97. doi:10.1039/c1pp05144j

Noonan, F. P., Zaidi, M. R., Wolnicka-Glubisz, A., Anver, M. R., Bahn, J., Wielgus, A., … De Fabo, E. C. (2012). Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nature Communications, 3(1). doi:10.1038/ncomms1893

Sinha, R. P., & Häder, D.-P. (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences, 1(4), 225-236. doi:10.1039/b201230h

Mouret, S., Philippe, C., Gracia-Chantegrel, J., Banyasz, A., Karpati, S., Markovitsi, D., & Douki, T. (2010). UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism? Organic & Biomolecular Chemistry, 8(7), 1706. doi:10.1039/b924712b

Epe, B. (2012). DNA damage spectra induced by photosensitization. Photochem. Photobiol. Sci., 11(1), 98-106. doi:10.1039/c1pp05190c

Cadet, J., & Douki, T. (2018). Formation of UV-induced DNA damage contributing to skin cancer development. Photochemical & Photobiological Sciences, 17(12), 1816-1841. doi:10.1039/c7pp00395a

Francés-Monerris, A., Tuñón, I., & Monari, A. (2019). Hypoxia-Selective Dissociation Mechanism of a Nitroimidazole Nucleoside in a DNA Environment. The Journal of Physical Chemistry Letters, 10(21), 6750-6754. doi:10.1021/acs.jpclett.9b02760

Roca-Sanjuán, D., Olaso-González, G., González-Ramírez, I., Serrano-Andrés, L., & Merchán, M. (2008). Molecular Basis of DNA Photodimerization: Intrinsic Production of Cyclobutane Cytosine Dimers. Journal of the American Chemical Society, 130(32), 10768-10779. doi:10.1021/ja803068n

Climent, T., González-Ramírez, I., González-Luque, R., Merchán, M., & Serrano-Andrés, L. (2010). Cyclobutane Pyrimidine Photodimerization of DNA/RNA Nucleobases in the Triplet State. The Journal of Physical Chemistry Letters, 1(14), 2072-2076. doi:10.1021/jz100601p

Dumont, E., & Monari, A. (2015). Understanding DNA under oxidative stress and sensitization: the role of molecular modeling. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00043

Lhiaubet-Vallet, V., Sarabia, Z., Hernández, D., Castell, J. ., & Miranda, M. . (2003). In vitro studies on DNA-photosensitization by different drug stereoisomers. Toxicology in Vitro, 17(5-6), 651-656. doi:10.1016/s0887-2333(03)00108-5

Sauvaigo, S., Douki, T., Odin, F., Caillat, S., Ravanat, J.-L., & Cadet, J. (2001). Analysis of Fluoroquinolone-mediated Photosensitization of 2′-Deoxyguanosine, Calf Thymus and Cellular DNA: Determination of Type-I, Type-II and Triplet–Triplet Energy Transfer Mechanism Contribution¶. Photochemistry and Photobiology, 73(3), 230. doi:10.1562/0031-8655(2001)073<0230:aofmpo>2.0.co;2

Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2009). Photosensitized DNA Damage: The Case of Fluoroquinolones. Photochemistry and Photobiology, 85(4), 861-868. doi:10.1111/j.1751-1097.2009.00548.x

Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e

Marazzi, M., Mai, S., Roca-Sanjuán, D., Delcey, M. G., Lindh, R., González, L., & Monari, A. (2016). Benzophenone Ultrafast Triplet Population: Revisiting the Kinetic Model by Surface-Hopping Dynamics. The Journal of Physical Chemistry Letters, 7(4), 622-626. doi:10.1021/acs.jpclett.5b02792

Dumont, E., Wibowo, M., Roca-Sanjuán, D., Garavelli, M., Assfeld, X., & Monari, A. (2015). Resolving the Benzophenone DNA-Photosensitization Mechanism at QM/MM Level. The Journal of Physical Chemistry Letters, 6(4), 576-580. doi:10.1021/jz502562d

Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Cuquerella, M. C., Lhiaubet-Vallet, V., & Miranda, M. A. (2013). Photosensitization of DNA by 5-Methyl-2-Pyrimidone Deoxyribonucleoside: (6-4) Photoproduct as a Possible Trojan Horse. Angewandte Chemie International Edition, 52(25), 6476-6479. doi:10.1002/anie.201302176

Bignon, E., Gattuso, H., Morell, C., Dumont, E., & Monari, A. (2015). DNA Photosensitization by an «Insider»: Photophysics and Triplet Energy Transfer of 5‐Methyl‐2‐pyrimidone Deoxyribonucleoside. Chemistry – A European Journal, 21(32), 11509-11516. doi:10.1002/chem.201501212

Rogstad, D. K., Heo, J., Vaidehi, N., Goddard, W. A., Burdzy, A., & Sowers, L. C. (2004). 5-Formyluracil-Induced Perturbations of DNA Function. Biochemistry, 43(19), 5688-5697. doi:10.1021/bi030247j

Bachman, M., Uribe-Lewis, S., Yang, X., Burgess, H. E., Iurlaro, M., Reik, W., … Balasubramanian, S. (2015). 5-Formylcytosine can be a stable DNA modification in mammals. Nature Chemical Biology, 11(8), 555-557. doi:10.1038/nchembio.1848

Wang, Y., Zhang, X., Zou, G., Peng, S., Liu, C., & Zhou, X. (2019). Detection and Application of 5-Formylcytosine and 5-Formyluracil in DNA. Accounts of Chemical Research, 52(4), 1016-1024. doi:10.1021/acs.accounts.8b00543

Aparici-Espert, I., Garcia-Lainez, G., Andreu, I., Miranda, M. A., & Lhiaubet-Vallet, V. (2018). Oxidatively Generated Lesions as Internal Photosensitizers for Pyrimidine Dimerization in DNA. ACS Chemical Biology, 13(3), 542-547. doi:10.1021/acschembio.7b01097

Francés-Monerris, A., Hognon, C., Miranda, M. A., Lhiaubet-Vallet, V., & Monari, A. (2018). Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment. Physical Chemistry Chemical Physics, 20(40), 25666-25675. doi:10.1039/c8cp04866e

Wang, X., Yu, Y., Zhou, Z., Liu, Y., Yang, Y., Xu, J., & Chen, J. (2019). Ultrafast Intersystem Crossing in Epigenetic DNA Nucleoside 2′-Deoxy-5-formylcytidine. The Journal of Physical Chemistry B, 123(27), 5782-5790. doi:10.1021/acs.jpcb.9b04361

Francés-Monerris, A., Lineros-Rosa, M., Miranda, M. A., Lhiaubet-Vallet, V., & Monari, A. (2020). Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates. Chemical Communications, 56(32), 4404-4407. doi:10.1039/d0cc01132k

CADET, T. D., J. (1999). Modification of DNA bases by photosensitized one-electron oxidation. International Journal of Radiation Biology, 75(5), 571-581. doi:10.1080/095530099140212

Douki, T., Delatour, T., Paganon, F., & Cadet, J. (1996). Measurement of Oxidative Damage at Pyrimidine Bases in γ-Irradiated DNA. Chemical Research in Toxicology, 9(7), 1145-1151. doi:10.1021/tx960095b

Frelon, S., Douki, T., Ravanat, J.-L., Pouget, J.-P., Tornabene, C., & Cadet, J. (2000). High-Performance Liquid Chromatography−Tandem Mass Spectrometry Measurement of Radiation-Induced Base Damage to Isolated and Cellular DNA. Chemical Research in Toxicology, 13(10), 1002-1010. doi:10.1021/tx000085h

Cadet, J., Douki, T., & Ravanat, J.-L. (2008). Oxidatively Generated Damage to the Guanine Moiety of DNA: Mechanistic Aspects and Formation in Cells. Accounts of Chemical Research, 41(8), 1075-1083. doi:10.1021/ar700245e

Pfaffeneder, T., Spada, F., Wagner, M., Brandmayr, C., Laube, S. K., Eisen, D., … Carell, T. (2014). Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nature Chemical Biology, 10(7), 574-581. doi:10.1038/nchembio.1532

Madugundu, G. S., Cadet, J., & Wagner, J. R. (2014). Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Research, 42(11), 7450-7460. doi:10.1093/nar/gku334

Kraus, T. F. J., Globisch, D., Wagner, M., Eigenbrod, S., Widmann, D., Münzel, M., … Kretzschmar, H. A. (2012). Low values of 5-hydroxymethylcytosine (5hmC), the «sixth base,» are associated with anaplasia in human brain tumors. International Journal of Cancer, 131(7), 1577-1590. doi:10.1002/ijc.27429

V. Lhiaubet-Vallet and M. A.Miranda , in CRC Handbook of Organic Photochemistry and Photobiology , ed. F. Ghetti , A. G. Griesbeck and M. Oelgemöller , CRC Press , 2012 , pp. 1541–1555

Alzueta, O. R., Cuquerella, M. C., & Miranda, M. A. (2019). Triplet Energy Transfer versus Excited State Cyclization as the Controlling Step in Photosensitized Bipyrimidine Dimerization. The Journal of Organic Chemistry, 84(21), 13329-13335. doi:10.1021/acs.joc.9b01423

Lhiaubet-Vallet, V., Cuquerella, M. C., Castell, J. V., Bosca, F., & Miranda, M. A. (2007). Triplet Excited Fluoroquinolones as Mediators for Thymine Cyclobutane Dimer Formation in DNA. The Journal of Physical Chemistry B, 111(25), 7409-7414. doi:10.1021/jp070167f

Douki, T. (2019). Pyrimidine (6‐4) Pyrimidone Photoproducts in UVA‐Irradiated DNA: Photosensitization or Photoisomerization? ChemPhotoChem, 4(4), 294-299. doi:10.1002/cptc.201900280

Kuhlmann, A., Bihr, L., & Wagenknecht, H. (2020). How Far Does Energy Migrate in DNA and Cause Damage? Evidence for Long‐Range Photodamage to DNA. Angewandte Chemie International Edition, 59(40), 17378-17382. doi:10.1002/anie.202009216

Antusch, L., Gaß, N., & Wagenknecht, H. (2016). Elucidation of the Dexter‐Type Energy Transfer in DNA by Thymine–Thymine Dimer Formation Using Photosensitizers as Artificial Nucleosides. Angewandte Chemie International Edition, 56(5), 1385-1389. doi:10.1002/anie.201610065

Fdez. Galván, I., Vacher, M., Alavi, A., Angeli, C., Aquilante, F., Autschbach, J., … Carlson, R. K. (2019). OpenMolcas: From Source Code to Insight. Journal of Chemical Theory and Computation, 15(11), 5925-5964. doi:10.1021/acs.jctc.9b00532

Miro, P., Lhiaubet-Vallet, V., Marin, M. L., & Miranda, M. A. (2015). Photosensitized Thymine Dimerization via Delocalized Triplet Excited States. Chemistry - A European Journal, 21(47), 17051-17056. doi:10.1002/chem.201502719

Schnappinger, T., Kölle, P., Marazzi, M., Monari, A., González, L., & de Vivie-Riedle, R. (2017). Ab initio molecular dynamics of thiophene: the interplay of internal conversion and intersystem crossing. Physical Chemistry Chemical Physics, 19(37), 25662-25670. doi:10.1039/c7cp05061e

Francés-Monerris, A., Segarra-Martí, J., Merchán, M., & Roca-Sanjuán, D. (2016). Theoretical study on the excited-state π-stacking versus intermolecular hydrogen-transfer processes in the guanine–cytosine/cytosine trimer. Theoretical Chemistry Accounts, 135(2). doi:10.1007/s00214-015-1762-z

González-Luque, R., Climent, T., González-Ramírez, I., Merchán, M., & Serrano-Andrés, L. (2010). Singlet−Triplet States Interaction Regions in DNA/RNA Nucleobase Hypersurfaces. Journal of Chemical Theory and Computation, 6(7), 2103-2114. doi:10.1021/ct100164m

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem