Mostrar el registro sencillo del ítem
dc.contributor.author | Lineros-Rosa, Mauricio | es_ES |
dc.contributor.author | Francés-Monerris, Antonio | es_ES |
dc.contributor.author | Monari, Antonio | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.contributor.author | Lhiaubet, Virginie Lyria | es_ES |
dc.date.accessioned | 2021-03-25T04:31:43Z | |
dc.date.available | 2021-03-25T04:31:43Z | |
dc.date.issued | 2020-11-28 | es_ES |
dc.identifier.issn | 1463-9076 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/164220 | |
dc.description.abstract | [EN] Interaction of nucleic acids with light is a scientific question of paramount relevance not only in the understanding of life functioning and evolution, but also in the insurgence of diseases such as malignant skin cancer and in the development of biomarkers and novel light-assisted therapeutic tools. This work shows that the UVA portion of sunlight, not absorbed by canonical DNA nucleobases, can be absorbed by 5-formyluracil (ForU) and 5-formylcytosine (ForC), two ubiquitous oxidatively generated lesions and epigenetic intermediates present in living beings in natural conditions. We measure the strong propensity of these molecules to populate triplet excited states able to transfer the excitation energy to thymine-thymine dyads, inducing the formation of cyclobutane pyrimidine dimers (CPDs). By using steady-state and transient absorption spectroscopy, NMR, HPLC, and theoretical calculations, we quantify the differences in the triplet-triplet energy transfer mediated by ForU and ForC, revealing that the former is much more efficient in delivering the excitation energy and producing the CPD photoproduct. Although significantly slower than ForU, ForC is also able to harm DNA nucleobases and therefore this process has to be taken into account as a viable photosensitization mechanism. The present findings evidence a rich photochemistry crucial to understand DNA damage photobehavior. | es_ES |
dc.description.sponsorship | Support from the Universite de Lorraine, CNRS, regional (Prometeo/2017/075) and Spanish Government (PGC2018-096684-B-I00, CTQ2017-87054-C2-2-P) is kindly acknowledged. A. F.-M. is grateful to Generalitat Valenciana and the European Social Fund (postdoctoral contract APOSTD/2019/149 and project GV/2020/226) for financial support. M. L.-R. acknowledges the Universitat Politecnica de Valencia for the FPI grant. All calculations have been performed on the local LPCT computer center and on the Explor regional center in the framework of the project "Dancing under the light". | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Physical Chemistry Chemical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Triplet energy-transfer | es_ES |
dc.subject | Dimer formation | es_ES |
dc.subject | Damage | es_ES |
dc.subject | Photosensitization | es_ES |
dc.subject | Dynamics | es_ES |
dc.subject | Photophysics | es_ES |
dc.subject | Dimerization | es_ES |
dc.subject | Mechanism | es_ES |
dc.subject | Bases | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/d0cp04557h | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87054-C2-2-P/ES/FOTOFISICA DE SISTEMAS ORGANICOS DE TRANSFERENCIA DE CARGA INNOVADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096684-B-I00/ES/REPARACION DEL ADN POR PROCESOS MULTIFOTONICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F149/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2020%2F226/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Lineros-Rosa, M.; Francés-Monerris, A.; Monari, A.; Miranda Alonso, MÁ.; Lhiaubet, VL. (2020). Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates. Physical Chemistry Chemical Physics. 22(44):25661-25668. https://doi.org/10.1039/d0cp04557h | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/d0cp04557h | es_ES |
dc.description.upvformatpinicio | 25661 | es_ES |
dc.description.upvformatpfin | 25668 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 44 | es_ES |
dc.identifier.pmid | 33169771 | es_ES |
dc.relation.pasarela | S\425455 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Université de Lorraine | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Centre National de la Recherche Scientifique, Francia | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Crespo-Hernández, C. E., Cohen, B., Hare, P. M., & Kohler, B. (2004). Ultrafast Excited-State Dynamics in Nucleic Acids. Chemical Reviews, 104(4), 1977-2020. doi:10.1021/cr0206770 | es_ES |
dc.description.references | Improta, R., Santoro, F., & Blancafort, L. (2016). Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chemical Reviews, 116(6), 3540-3593. doi:10.1021/acs.chemrev.5b00444 | es_ES |
dc.description.references | Sage, E., Girard, P.-M., & Francesconi, S. (2012). Unravelling UVA-induced mutagenesis. Photochem. Photobiol. Sci., 11(1), 74-80. doi:10.1039/c1pp05219e | es_ES |
dc.description.references | Francés-Monerris, A., Gattuso, H., Roca-Sanjuán, D., Tuñón, I., Marazzi, M., Dumont, E., & Monari, A. (2018). Dynamics of the excited-state hydrogen transfer in a (dG)·(dC) homopolymer: intrinsic photostability of DNA. Chemical Science, 9(41), 7902-7911. doi:10.1039/c8sc03252a | es_ES |
dc.description.references | Zhang, Y., de La Harpe, K., Beckstead, A. A., Improta, R., & Kohler, B. (2015). UV-Induced Proton Transfer between DNA Strands. Journal of the American Chemical Society, 137(22), 7059-7062. doi:10.1021/jacs.5b03914 | es_ES |
dc.description.references | Zhang, Y., Li, X.-B., Fleming, A. M., Dood, J., Beckstead, A. A., Orendt, A. M., … Kohler, B. (2016). UV-Induced Proton-Coupled Electron Transfer in Cyclic DNA Miniduplexes. Journal of the American Chemical Society, 138(23), 7395-7401. doi:10.1021/jacs.6b03216 | es_ES |
dc.description.references | Bucher, D. B., Schlueter, A., Carell, T., & Zinth, W. (2014). Watson-Crick Base Pairing Controls Excited-State Decay in Natural DNA. Angewandte Chemie International Edition, 53(42), 11366-11369. doi:10.1002/anie.201406286 | es_ES |
dc.description.references | Röttger, K., Marroux, H. J. B., Grubb, M. P., Coulter, P. M., Böhnke, H., Henderson, A. S., … Roberts, G. M. (2015). Ultraviolet Absorption Induces Hydrogen‐Atom Transfer in G⋅C Watson–Crick DNA Base Pairs in Solution. Angewandte Chemie International Edition, 54(49), 14719-14722. doi:10.1002/anie.201506940 | es_ES |
dc.description.references | Nogueira, J. J., Plasser, F., & González, L. (2017). Electronic delocalization, charge transfer and hypochromism in the UV absorption spectrum of polyadenine unravelled by multiscale computations and quantitative wavefunction analysis. Chemical Science, 8(8), 5682-5691. doi:10.1039/c7sc01600j | es_ES |
dc.description.references | Barbatti, M., Aquino, A. J. A., Szymczak, J. J., Nachtigallova, D., Hobza, P., & Lischka, H. (2010). Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Proceedings of the National Academy of Sciences, 107(50), 21453-21458. doi:10.1073/pnas.1014982107 | es_ES |
dc.description.references | Reiter, S., Keefer, D., & de Vivie-Riedle, R. (2018). RNA Environment Is Responsible for Decreased Photostability of Uracil. Journal of the American Chemical Society, 140(28), 8714-8720. doi:10.1021/jacs.8b02962 | es_ES |
dc.description.references | Cuquerella, M. C., Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2011). Photosensitised pyrimidine dimerisation in DNA. Chemical Science, 2(7), 1219. doi:10.1039/c1sc00088h | es_ES |
dc.description.references | Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences, 103(37), 13765-13770. doi:10.1073/pnas.0604213103 | es_ES |
dc.description.references | Ikehata, H., Mori, T., Kamei, Y., Douki, T., Cadet, J., & Yamamoto, M. (2019). Wavelength‐ and Tissue‐dependent Variations in the Mutagenicity of Cyclobutane Pyrimidine Dimers in Mouse Skin. Photochemistry and Photobiology, 96(1), 94-104. doi:10.1111/php.13159 | es_ES |
dc.description.references | Pfeifer, G. P., & Besaratinia, A. (2012). UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem. Photobiol. Sci., 11(1), 90-97. doi:10.1039/c1pp05144j | es_ES |
dc.description.references | Noonan, F. P., Zaidi, M. R., Wolnicka-Glubisz, A., Anver, M. R., Bahn, J., Wielgus, A., … De Fabo, E. C. (2012). Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nature Communications, 3(1). doi:10.1038/ncomms1893 | es_ES |
dc.description.references | Sinha, R. P., & Häder, D.-P. (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences, 1(4), 225-236. doi:10.1039/b201230h | es_ES |
dc.description.references | Mouret, S., Philippe, C., Gracia-Chantegrel, J., Banyasz, A., Karpati, S., Markovitsi, D., & Douki, T. (2010). UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism? Organic & Biomolecular Chemistry, 8(7), 1706. doi:10.1039/b924712b | es_ES |
dc.description.references | Epe, B. (2012). DNA damage spectra induced by photosensitization. Photochem. Photobiol. Sci., 11(1), 98-106. doi:10.1039/c1pp05190c | es_ES |
dc.description.references | Cadet, J., & Douki, T. (2018). Formation of UV-induced DNA damage contributing to skin cancer development. Photochemical & Photobiological Sciences, 17(12), 1816-1841. doi:10.1039/c7pp00395a | es_ES |
dc.description.references | Francés-Monerris, A., Tuñón, I., & Monari, A. (2019). Hypoxia-Selective Dissociation Mechanism of a Nitroimidazole Nucleoside in a DNA Environment. The Journal of Physical Chemistry Letters, 10(21), 6750-6754. doi:10.1021/acs.jpclett.9b02760 | es_ES |
dc.description.references | Roca-Sanjuán, D., Olaso-González, G., González-Ramírez, I., Serrano-Andrés, L., & Merchán, M. (2008). Molecular Basis of DNA Photodimerization: Intrinsic Production of Cyclobutane Cytosine Dimers. Journal of the American Chemical Society, 130(32), 10768-10779. doi:10.1021/ja803068n | es_ES |
dc.description.references | Climent, T., González-Ramírez, I., González-Luque, R., Merchán, M., & Serrano-Andrés, L. (2010). Cyclobutane Pyrimidine Photodimerization of DNA/RNA Nucleobases in the Triplet State. The Journal of Physical Chemistry Letters, 1(14), 2072-2076. doi:10.1021/jz100601p | es_ES |
dc.description.references | Dumont, E., & Monari, A. (2015). Understanding DNA under oxidative stress and sensitization: the role of molecular modeling. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00043 | es_ES |
dc.description.references | Lhiaubet-Vallet, V., Sarabia, Z., Hernández, D., Castell, J. ., & Miranda, M. . (2003). In vitro studies on DNA-photosensitization by different drug stereoisomers. Toxicology in Vitro, 17(5-6), 651-656. doi:10.1016/s0887-2333(03)00108-5 | es_ES |
dc.description.references | Sauvaigo, S., Douki, T., Odin, F., Caillat, S., Ravanat, J.-L., & Cadet, J. (2001). Analysis of Fluoroquinolone-mediated Photosensitization of 2′-Deoxyguanosine, Calf Thymus and Cellular DNA: Determination of Type-I, Type-II and Triplet–Triplet Energy Transfer Mechanism Contribution¶. Photochemistry and Photobiology, 73(3), 230. doi:10.1562/0031-8655(2001)073<0230:aofmpo>2.0.co;2 | es_ES |
dc.description.references | Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2009). Photosensitized DNA Damage: The Case of Fluoroquinolones. Photochemistry and Photobiology, 85(4), 861-868. doi:10.1111/j.1751-1097.2009.00548.x | es_ES |
dc.description.references | Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e | es_ES |
dc.description.references | Marazzi, M., Mai, S., Roca-Sanjuán, D., Delcey, M. G., Lindh, R., González, L., & Monari, A. (2016). Benzophenone Ultrafast Triplet Population: Revisiting the Kinetic Model by Surface-Hopping Dynamics. The Journal of Physical Chemistry Letters, 7(4), 622-626. doi:10.1021/acs.jpclett.5b02792 | es_ES |
dc.description.references | Dumont, E., Wibowo, M., Roca-Sanjuán, D., Garavelli, M., Assfeld, X., & Monari, A. (2015). Resolving the Benzophenone DNA-Photosensitization Mechanism at QM/MM Level. The Journal of Physical Chemistry Letters, 6(4), 576-580. doi:10.1021/jz502562d | es_ES |
dc.description.references | Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Cuquerella, M. C., Lhiaubet-Vallet, V., & Miranda, M. A. (2013). Photosensitization of DNA by 5-Methyl-2-Pyrimidone Deoxyribonucleoside: (6-4) Photoproduct as a Possible Trojan Horse. Angewandte Chemie International Edition, 52(25), 6476-6479. doi:10.1002/anie.201302176 | es_ES |
dc.description.references | Bignon, E., Gattuso, H., Morell, C., Dumont, E., & Monari, A. (2015). DNA Photosensitization by an «Insider»: Photophysics and Triplet Energy Transfer of 5‐Methyl‐2‐pyrimidone Deoxyribonucleoside. Chemistry – A European Journal, 21(32), 11509-11516. doi:10.1002/chem.201501212 | es_ES |
dc.description.references | Rogstad, D. K., Heo, J., Vaidehi, N., Goddard, W. A., Burdzy, A., & Sowers, L. C. (2004). 5-Formyluracil-Induced Perturbations of DNA Function. Biochemistry, 43(19), 5688-5697. doi:10.1021/bi030247j | es_ES |
dc.description.references | Bachman, M., Uribe-Lewis, S., Yang, X., Burgess, H. E., Iurlaro, M., Reik, W., … Balasubramanian, S. (2015). 5-Formylcytosine can be a stable DNA modification in mammals. Nature Chemical Biology, 11(8), 555-557. doi:10.1038/nchembio.1848 | es_ES |
dc.description.references | Wang, Y., Zhang, X., Zou, G., Peng, S., Liu, C., & Zhou, X. (2019). Detection and Application of 5-Formylcytosine and 5-Formyluracil in DNA. Accounts of Chemical Research, 52(4), 1016-1024. doi:10.1021/acs.accounts.8b00543 | es_ES |
dc.description.references | Aparici-Espert, I., Garcia-Lainez, G., Andreu, I., Miranda, M. A., & Lhiaubet-Vallet, V. (2018). Oxidatively Generated Lesions as Internal Photosensitizers for Pyrimidine Dimerization in DNA. ACS Chemical Biology, 13(3), 542-547. doi:10.1021/acschembio.7b01097 | es_ES |
dc.description.references | Francés-Monerris, A., Hognon, C., Miranda, M. A., Lhiaubet-Vallet, V., & Monari, A. (2018). Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment. Physical Chemistry Chemical Physics, 20(40), 25666-25675. doi:10.1039/c8cp04866e | es_ES |
dc.description.references | Wang, X., Yu, Y., Zhou, Z., Liu, Y., Yang, Y., Xu, J., & Chen, J. (2019). Ultrafast Intersystem Crossing in Epigenetic DNA Nucleoside 2′-Deoxy-5-formylcytidine. The Journal of Physical Chemistry B, 123(27), 5782-5790. doi:10.1021/acs.jpcb.9b04361 | es_ES |
dc.description.references | Francés-Monerris, A., Lineros-Rosa, M., Miranda, M. A., Lhiaubet-Vallet, V., & Monari, A. (2020). Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates. Chemical Communications, 56(32), 4404-4407. doi:10.1039/d0cc01132k | es_ES |
dc.description.references | CADET, T. D., J. (1999). Modification of DNA bases by photosensitized one-electron oxidation. International Journal of Radiation Biology, 75(5), 571-581. doi:10.1080/095530099140212 | es_ES |
dc.description.references | Douki, T., Delatour, T., Paganon, F., & Cadet, J. (1996). Measurement of Oxidative Damage at Pyrimidine Bases in γ-Irradiated DNA. Chemical Research in Toxicology, 9(7), 1145-1151. doi:10.1021/tx960095b | es_ES |
dc.description.references | Frelon, S., Douki, T., Ravanat, J.-L., Pouget, J.-P., Tornabene, C., & Cadet, J. (2000). High-Performance Liquid Chromatography−Tandem Mass Spectrometry Measurement of Radiation-Induced Base Damage to Isolated and Cellular DNA. Chemical Research in Toxicology, 13(10), 1002-1010. doi:10.1021/tx000085h | es_ES |
dc.description.references | Cadet, J., Douki, T., & Ravanat, J.-L. (2008). Oxidatively Generated Damage to the Guanine Moiety of DNA: Mechanistic Aspects and Formation in Cells. Accounts of Chemical Research, 41(8), 1075-1083. doi:10.1021/ar700245e | es_ES |
dc.description.references | Pfaffeneder, T., Spada, F., Wagner, M., Brandmayr, C., Laube, S. K., Eisen, D., … Carell, T. (2014). Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nature Chemical Biology, 10(7), 574-581. doi:10.1038/nchembio.1532 | es_ES |
dc.description.references | Madugundu, G. S., Cadet, J., & Wagner, J. R. (2014). Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Research, 42(11), 7450-7460. doi:10.1093/nar/gku334 | es_ES |
dc.description.references | Kraus, T. F. J., Globisch, D., Wagner, M., Eigenbrod, S., Widmann, D., Münzel, M., … Kretzschmar, H. A. (2012). Low values of 5-hydroxymethylcytosine (5hmC), the «sixth base,» are associated with anaplasia in human brain tumors. International Journal of Cancer, 131(7), 1577-1590. doi:10.1002/ijc.27429 | es_ES |
dc.description.references | V. Lhiaubet-Vallet and M. A.Miranda , in CRC Handbook of Organic Photochemistry and Photobiology , ed. F. Ghetti , A. G. Griesbeck and M. Oelgemöller , CRC Press , 2012 , pp. 1541–1555 | es_ES |
dc.description.references | Alzueta, O. R., Cuquerella, M. C., & Miranda, M. A. (2019). Triplet Energy Transfer versus Excited State Cyclization as the Controlling Step in Photosensitized Bipyrimidine Dimerization. The Journal of Organic Chemistry, 84(21), 13329-13335. doi:10.1021/acs.joc.9b01423 | es_ES |
dc.description.references | Lhiaubet-Vallet, V., Cuquerella, M. C., Castell, J. V., Bosca, F., & Miranda, M. A. (2007). Triplet Excited Fluoroquinolones as Mediators for Thymine Cyclobutane Dimer Formation in DNA. The Journal of Physical Chemistry B, 111(25), 7409-7414. doi:10.1021/jp070167f | es_ES |
dc.description.references | Douki, T. (2019). Pyrimidine (6‐4) Pyrimidone Photoproducts in UVA‐Irradiated DNA: Photosensitization or Photoisomerization? ChemPhotoChem, 4(4), 294-299. doi:10.1002/cptc.201900280 | es_ES |
dc.description.references | Kuhlmann, A., Bihr, L., & Wagenknecht, H. (2020). How Far Does Energy Migrate in DNA and Cause Damage? Evidence for Long‐Range Photodamage to DNA. Angewandte Chemie International Edition, 59(40), 17378-17382. doi:10.1002/anie.202009216 | es_ES |
dc.description.references | Antusch, L., Gaß, N., & Wagenknecht, H. (2016). Elucidation of the Dexter‐Type Energy Transfer in DNA by Thymine–Thymine Dimer Formation Using Photosensitizers as Artificial Nucleosides. Angewandte Chemie International Edition, 56(5), 1385-1389. doi:10.1002/anie.201610065 | es_ES |
dc.description.references | Fdez. Galván, I., Vacher, M., Alavi, A., Angeli, C., Aquilante, F., Autschbach, J., … Carlson, R. K. (2019). OpenMolcas: From Source Code to Insight. Journal of Chemical Theory and Computation, 15(11), 5925-5964. doi:10.1021/acs.jctc.9b00532 | es_ES |
dc.description.references | Miro, P., Lhiaubet-Vallet, V., Marin, M. L., & Miranda, M. A. (2015). Photosensitized Thymine Dimerization via Delocalized Triplet Excited States. Chemistry - A European Journal, 21(47), 17051-17056. doi:10.1002/chem.201502719 | es_ES |
dc.description.references | Schnappinger, T., Kölle, P., Marazzi, M., Monari, A., González, L., & de Vivie-Riedle, R. (2017). Ab initio molecular dynamics of thiophene: the interplay of internal conversion and intersystem crossing. Physical Chemistry Chemical Physics, 19(37), 25662-25670. doi:10.1039/c7cp05061e | es_ES |
dc.description.references | Francés-Monerris, A., Segarra-Martí, J., Merchán, M., & Roca-Sanjuán, D. (2016). Theoretical study on the excited-state π-stacking versus intermolecular hydrogen-transfer processes in the guanine–cytosine/cytosine trimer. Theoretical Chemistry Accounts, 135(2). doi:10.1007/s00214-015-1762-z | es_ES |
dc.description.references | González-Luque, R., Climent, T., González-Ramírez, I., Merchán, M., & Serrano-Andrés, L. (2010). Singlet−Triplet States Interaction Regions in DNA/RNA Nucleobase Hypersurfaces. Journal of Chemical Theory and Computation, 6(7), 2103-2114. doi:10.1021/ct100164m | es_ES |