- -

Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lineros-Rosa, Mauricio es_ES
dc.contributor.author Francés-Monerris, Antonio es_ES
dc.contributor.author Monari, Antonio es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Lhiaubet, Virginie Lyria es_ES
dc.date.accessioned 2021-03-25T04:31:43Z
dc.date.available 2021-03-25T04:31:43Z
dc.date.issued 2020-11-28 es_ES
dc.identifier.issn 1463-9076 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164220
dc.description.abstract [EN] Interaction of nucleic acids with light is a scientific question of paramount relevance not only in the understanding of life functioning and evolution, but also in the insurgence of diseases such as malignant skin cancer and in the development of biomarkers and novel light-assisted therapeutic tools. This work shows that the UVA portion of sunlight, not absorbed by canonical DNA nucleobases, can be absorbed by 5-formyluracil (ForU) and 5-formylcytosine (ForC), two ubiquitous oxidatively generated lesions and epigenetic intermediates present in living beings in natural conditions. We measure the strong propensity of these molecules to populate triplet excited states able to transfer the excitation energy to thymine-thymine dyads, inducing the formation of cyclobutane pyrimidine dimers (CPDs). By using steady-state and transient absorption spectroscopy, NMR, HPLC, and theoretical calculations, we quantify the differences in the triplet-triplet energy transfer mediated by ForU and ForC, revealing that the former is much more efficient in delivering the excitation energy and producing the CPD photoproduct. Although significantly slower than ForU, ForC is also able to harm DNA nucleobases and therefore this process has to be taken into account as a viable photosensitization mechanism. The present findings evidence a rich photochemistry crucial to understand DNA damage photobehavior. es_ES
dc.description.sponsorship Support from the Universite de Lorraine, CNRS, regional (Prometeo/2017/075) and Spanish Government (PGC2018-096684-B-I00, CTQ2017-87054-C2-2-P) is kindly acknowledged. A. F.-M. is grateful to Generalitat Valenciana and the European Social Fund (postdoctoral contract APOSTD/2019/149 and project GV/2020/226) for financial support. M. L.-R. acknowledges the Universitat Politecnica de Valencia for the FPI grant. All calculations have been performed on the local LPCT computer center and on the Explor regional center in the framework of the project "Dancing under the light". es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Triplet energy-transfer es_ES
dc.subject Dimer formation es_ES
dc.subject Damage es_ES
dc.subject Photosensitization es_ES
dc.subject Dynamics es_ES
dc.subject Photophysics es_ES
dc.subject Dimerization es_ES
dc.subject Mechanism es_ES
dc.subject Bases es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0cp04557h es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87054-C2-2-P/ES/FOTOFISICA DE SISTEMAS ORGANICOS DE TRANSFERENCIA DE CARGA INNOVADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096684-B-I00/ES/REPARACION DEL ADN POR PROCESOS MULTIFOTONICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F149/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2020%2F226/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Lineros-Rosa, M.; Francés-Monerris, A.; Monari, A.; Miranda Alonso, MÁ.; Lhiaubet, VL. (2020). Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates. Physical Chemistry Chemical Physics. 22(44):25661-25668. https://doi.org/10.1039/d0cp04557h es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d0cp04557h es_ES
dc.description.upvformatpinicio 25661 es_ES
dc.description.upvformatpfin 25668 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 44 es_ES
dc.identifier.pmid 33169771 es_ES
dc.relation.pasarela S\425455 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Université de Lorraine es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Centre National de la Recherche Scientifique, Francia es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Crespo-Hernández, C. E., Cohen, B., Hare, P. M., & Kohler, B. (2004). Ultrafast Excited-State Dynamics in Nucleic Acids. Chemical Reviews, 104(4), 1977-2020. doi:10.1021/cr0206770 es_ES
dc.description.references Improta, R., Santoro, F., & Blancafort, L. (2016). Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chemical Reviews, 116(6), 3540-3593. doi:10.1021/acs.chemrev.5b00444 es_ES
dc.description.references Sage, E., Girard, P.-M., & Francesconi, S. (2012). Unravelling UVA-induced mutagenesis. Photochem. Photobiol. Sci., 11(1), 74-80. doi:10.1039/c1pp05219e es_ES
dc.description.references Francés-Monerris, A., Gattuso, H., Roca-Sanjuán, D., Tuñón, I., Marazzi, M., Dumont, E., & Monari, A. (2018). Dynamics of the excited-state hydrogen transfer in a (dG)·(dC) homopolymer: intrinsic photostability of DNA. Chemical Science, 9(41), 7902-7911. doi:10.1039/c8sc03252a es_ES
dc.description.references Zhang, Y., de La Harpe, K., Beckstead, A. A., Improta, R., & Kohler, B. (2015). UV-Induced Proton Transfer between DNA Strands. Journal of the American Chemical Society, 137(22), 7059-7062. doi:10.1021/jacs.5b03914 es_ES
dc.description.references Zhang, Y., Li, X.-B., Fleming, A. M., Dood, J., Beckstead, A. A., Orendt, A. M., … Kohler, B. (2016). UV-Induced Proton-Coupled Electron Transfer in Cyclic DNA Miniduplexes. Journal of the American Chemical Society, 138(23), 7395-7401. doi:10.1021/jacs.6b03216 es_ES
dc.description.references Bucher, D. B., Schlueter, A., Carell, T., & Zinth, W. (2014). Watson-Crick Base Pairing Controls Excited-State Decay in Natural DNA. Angewandte Chemie International Edition, 53(42), 11366-11369. doi:10.1002/anie.201406286 es_ES
dc.description.references Röttger, K., Marroux, H. J. B., Grubb, M. P., Coulter, P. M., Böhnke, H., Henderson, A. S., … Roberts, G. M. (2015). Ultraviolet Absorption Induces Hydrogen‐Atom Transfer in G⋅C Watson–Crick DNA Base Pairs in Solution. Angewandte Chemie International Edition, 54(49), 14719-14722. doi:10.1002/anie.201506940 es_ES
dc.description.references Nogueira, J. J., Plasser, F., & González, L. (2017). Electronic delocalization, charge transfer and hypochromism in the UV absorption spectrum of polyadenine unravelled by multiscale computations and quantitative wavefunction analysis. Chemical Science, 8(8), 5682-5691. doi:10.1039/c7sc01600j es_ES
dc.description.references Barbatti, M., Aquino, A. J. A., Szymczak, J. J., Nachtigallova, D., Hobza, P., & Lischka, H. (2010). Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Proceedings of the National Academy of Sciences, 107(50), 21453-21458. doi:10.1073/pnas.1014982107 es_ES
dc.description.references Reiter, S., Keefer, D., & de Vivie-Riedle, R. (2018). RNA Environment Is Responsible for Decreased Photostability of Uracil. Journal of the American Chemical Society, 140(28), 8714-8720. doi:10.1021/jacs.8b02962 es_ES
dc.description.references Cuquerella, M. C., Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2011). Photosensitised pyrimidine dimerisation in DNA. Chemical Science, 2(7), 1219. doi:10.1039/c1sc00088h es_ES
dc.description.references Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences, 103(37), 13765-13770. doi:10.1073/pnas.0604213103 es_ES
dc.description.references Ikehata, H., Mori, T., Kamei, Y., Douki, T., Cadet, J., & Yamamoto, M. (2019). Wavelength‐ and Tissue‐dependent Variations in the Mutagenicity of Cyclobutane Pyrimidine Dimers in Mouse Skin. Photochemistry and Photobiology, 96(1), 94-104. doi:10.1111/php.13159 es_ES
dc.description.references Pfeifer, G. P., & Besaratinia, A. (2012). UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem. Photobiol. Sci., 11(1), 90-97. doi:10.1039/c1pp05144j es_ES
dc.description.references Noonan, F. P., Zaidi, M. R., Wolnicka-Glubisz, A., Anver, M. R., Bahn, J., Wielgus, A., … De Fabo, E. C. (2012). Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nature Communications, 3(1). doi:10.1038/ncomms1893 es_ES
dc.description.references Sinha, R. P., & Häder, D.-P. (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences, 1(4), 225-236. doi:10.1039/b201230h es_ES
dc.description.references Mouret, S., Philippe, C., Gracia-Chantegrel, J., Banyasz, A., Karpati, S., Markovitsi, D., & Douki, T. (2010). UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism? Organic & Biomolecular Chemistry, 8(7), 1706. doi:10.1039/b924712b es_ES
dc.description.references Epe, B. (2012). DNA damage spectra induced by photosensitization. Photochem. Photobiol. Sci., 11(1), 98-106. doi:10.1039/c1pp05190c es_ES
dc.description.references Cadet, J., & Douki, T. (2018). Formation of UV-induced DNA damage contributing to skin cancer development. Photochemical & Photobiological Sciences, 17(12), 1816-1841. doi:10.1039/c7pp00395a es_ES
dc.description.references Francés-Monerris, A., Tuñón, I., & Monari, A. (2019). Hypoxia-Selective Dissociation Mechanism of a Nitroimidazole Nucleoside in a DNA Environment. The Journal of Physical Chemistry Letters, 10(21), 6750-6754. doi:10.1021/acs.jpclett.9b02760 es_ES
dc.description.references Roca-Sanjuán, D., Olaso-González, G., González-Ramírez, I., Serrano-Andrés, L., & Merchán, M. (2008). Molecular Basis of DNA Photodimerization: Intrinsic Production of Cyclobutane Cytosine Dimers. Journal of the American Chemical Society, 130(32), 10768-10779. doi:10.1021/ja803068n es_ES
dc.description.references Climent, T., González-Ramírez, I., González-Luque, R., Merchán, M., & Serrano-Andrés, L. (2010). Cyclobutane Pyrimidine Photodimerization of DNA/RNA Nucleobases in the Triplet State. The Journal of Physical Chemistry Letters, 1(14), 2072-2076. doi:10.1021/jz100601p es_ES
dc.description.references Dumont, E., & Monari, A. (2015). Understanding DNA under oxidative stress and sensitization: the role of molecular modeling. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00043 es_ES
dc.description.references Lhiaubet-Vallet, V., Sarabia, Z., Hernández, D., Castell, J. ., & Miranda, M. . (2003). In vitro studies on DNA-photosensitization by different drug stereoisomers. Toxicology in Vitro, 17(5-6), 651-656. doi:10.1016/s0887-2333(03)00108-5 es_ES
dc.description.references Sauvaigo, S., Douki, T., Odin, F., Caillat, S., Ravanat, J.-L., & Cadet, J. (2001). Analysis of Fluoroquinolone-mediated Photosensitization of 2′-Deoxyguanosine, Calf Thymus and Cellular DNA: Determination of Type-I, Type-II and Triplet–Triplet Energy Transfer Mechanism Contribution¶. Photochemistry and Photobiology, 73(3), 230. doi:10.1562/0031-8655(2001)073<0230:aofmpo>2.0.co;2 es_ES
dc.description.references Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2009). Photosensitized DNA Damage: The Case of Fluoroquinolones. Photochemistry and Photobiology, 85(4), 861-868. doi:10.1111/j.1751-1097.2009.00548.x es_ES
dc.description.references Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e es_ES
dc.description.references Marazzi, M., Mai, S., Roca-Sanjuán, D., Delcey, M. G., Lindh, R., González, L., & Monari, A. (2016). Benzophenone Ultrafast Triplet Population: Revisiting the Kinetic Model by Surface-Hopping Dynamics. The Journal of Physical Chemistry Letters, 7(4), 622-626. doi:10.1021/acs.jpclett.5b02792 es_ES
dc.description.references Dumont, E., Wibowo, M., Roca-Sanjuán, D., Garavelli, M., Assfeld, X., & Monari, A. (2015). Resolving the Benzophenone DNA-Photosensitization Mechanism at QM/MM Level. The Journal of Physical Chemistry Letters, 6(4), 576-580. doi:10.1021/jz502562d es_ES
dc.description.references Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Cuquerella, M. C., Lhiaubet-Vallet, V., & Miranda, M. A. (2013). Photosensitization of DNA by 5-Methyl-2-Pyrimidone Deoxyribonucleoside: (6-4) Photoproduct as a Possible Trojan Horse. Angewandte Chemie International Edition, 52(25), 6476-6479. doi:10.1002/anie.201302176 es_ES
dc.description.references Bignon, E., Gattuso, H., Morell, C., Dumont, E., & Monari, A. (2015). DNA Photosensitization by an «Insider»: Photophysics and Triplet Energy Transfer of 5‐Methyl‐2‐pyrimidone Deoxyribonucleoside. Chemistry – A European Journal, 21(32), 11509-11516. doi:10.1002/chem.201501212 es_ES
dc.description.references Rogstad, D. K., Heo, J., Vaidehi, N., Goddard, W. A., Burdzy, A., & Sowers, L. C. (2004). 5-Formyluracil-Induced Perturbations of DNA Function. Biochemistry, 43(19), 5688-5697. doi:10.1021/bi030247j es_ES
dc.description.references Bachman, M., Uribe-Lewis, S., Yang, X., Burgess, H. E., Iurlaro, M., Reik, W., … Balasubramanian, S. (2015). 5-Formylcytosine can be a stable DNA modification in mammals. Nature Chemical Biology, 11(8), 555-557. doi:10.1038/nchembio.1848 es_ES
dc.description.references Wang, Y., Zhang, X., Zou, G., Peng, S., Liu, C., & Zhou, X. (2019). Detection and Application of 5-Formylcytosine and 5-Formyluracil in DNA. Accounts of Chemical Research, 52(4), 1016-1024. doi:10.1021/acs.accounts.8b00543 es_ES
dc.description.references Aparici-Espert, I., Garcia-Lainez, G., Andreu, I., Miranda, M. A., & Lhiaubet-Vallet, V. (2018). Oxidatively Generated Lesions as Internal Photosensitizers for Pyrimidine Dimerization in DNA. ACS Chemical Biology, 13(3), 542-547. doi:10.1021/acschembio.7b01097 es_ES
dc.description.references Francés-Monerris, A., Hognon, C., Miranda, M. A., Lhiaubet-Vallet, V., & Monari, A. (2018). Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment. Physical Chemistry Chemical Physics, 20(40), 25666-25675. doi:10.1039/c8cp04866e es_ES
dc.description.references Wang, X., Yu, Y., Zhou, Z., Liu, Y., Yang, Y., Xu, J., & Chen, J. (2019). Ultrafast Intersystem Crossing in Epigenetic DNA Nucleoside 2′-Deoxy-5-formylcytidine. The Journal of Physical Chemistry B, 123(27), 5782-5790. doi:10.1021/acs.jpcb.9b04361 es_ES
dc.description.references Francés-Monerris, A., Lineros-Rosa, M., Miranda, M. A., Lhiaubet-Vallet, V., & Monari, A. (2020). Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates. Chemical Communications, 56(32), 4404-4407. doi:10.1039/d0cc01132k es_ES
dc.description.references CADET, T. D., J. (1999). Modification of DNA bases by photosensitized one-electron oxidation. International Journal of Radiation Biology, 75(5), 571-581. doi:10.1080/095530099140212 es_ES
dc.description.references Douki, T., Delatour, T., Paganon, F., & Cadet, J. (1996). Measurement of Oxidative Damage at Pyrimidine Bases in γ-Irradiated DNA. Chemical Research in Toxicology, 9(7), 1145-1151. doi:10.1021/tx960095b es_ES
dc.description.references Frelon, S., Douki, T., Ravanat, J.-L., Pouget, J.-P., Tornabene, C., & Cadet, J. (2000). High-Performance Liquid Chromatography−Tandem Mass Spectrometry Measurement of Radiation-Induced Base Damage to Isolated and Cellular DNA. Chemical Research in Toxicology, 13(10), 1002-1010. doi:10.1021/tx000085h es_ES
dc.description.references Cadet, J., Douki, T., & Ravanat, J.-L. (2008). Oxidatively Generated Damage to the Guanine Moiety of DNA: Mechanistic Aspects and Formation in Cells. Accounts of Chemical Research, 41(8), 1075-1083. doi:10.1021/ar700245e es_ES
dc.description.references Pfaffeneder, T., Spada, F., Wagner, M., Brandmayr, C., Laube, S. K., Eisen, D., … Carell, T. (2014). Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nature Chemical Biology, 10(7), 574-581. doi:10.1038/nchembio.1532 es_ES
dc.description.references Madugundu, G. S., Cadet, J., & Wagner, J. R. (2014). Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Research, 42(11), 7450-7460. doi:10.1093/nar/gku334 es_ES
dc.description.references Kraus, T. F. J., Globisch, D., Wagner, M., Eigenbrod, S., Widmann, D., Münzel, M., … Kretzschmar, H. A. (2012). Low values of 5-hydroxymethylcytosine (5hmC), the «sixth base,» are associated with anaplasia in human brain tumors. International Journal of Cancer, 131(7), 1577-1590. doi:10.1002/ijc.27429 es_ES
dc.description.references V. Lhiaubet-Vallet and M. A.Miranda , in CRC Handbook of Organic Photochemistry and Photobiology , ed. F. Ghetti , A. G. Griesbeck and M. Oelgemöller , CRC Press , 2012 , pp. 1541–1555 es_ES
dc.description.references Alzueta, O. R., Cuquerella, M. C., & Miranda, M. A. (2019). Triplet Energy Transfer versus Excited State Cyclization as the Controlling Step in Photosensitized Bipyrimidine Dimerization. The Journal of Organic Chemistry, 84(21), 13329-13335. doi:10.1021/acs.joc.9b01423 es_ES
dc.description.references Lhiaubet-Vallet, V., Cuquerella, M. C., Castell, J. V., Bosca, F., & Miranda, M. A. (2007). Triplet Excited Fluoroquinolones as Mediators for Thymine Cyclobutane Dimer Formation in DNA. The Journal of Physical Chemistry B, 111(25), 7409-7414. doi:10.1021/jp070167f es_ES
dc.description.references Douki, T. (2019). Pyrimidine (6‐4) Pyrimidone Photoproducts in UVA‐Irradiated DNA: Photosensitization or Photoisomerization? ChemPhotoChem, 4(4), 294-299. doi:10.1002/cptc.201900280 es_ES
dc.description.references Kuhlmann, A., Bihr, L., & Wagenknecht, H. (2020). How Far Does Energy Migrate in DNA and Cause Damage? Evidence for Long‐Range Photodamage to DNA. Angewandte Chemie International Edition, 59(40), 17378-17382. doi:10.1002/anie.202009216 es_ES
dc.description.references Antusch, L., Gaß, N., & Wagenknecht, H. (2016). Elucidation of the Dexter‐Type Energy Transfer in DNA by Thymine–Thymine Dimer Formation Using Photosensitizers as Artificial Nucleosides. Angewandte Chemie International Edition, 56(5), 1385-1389. doi:10.1002/anie.201610065 es_ES
dc.description.references Fdez. Galván, I., Vacher, M., Alavi, A., Angeli, C., Aquilante, F., Autschbach, J., … Carlson, R. K. (2019). OpenMolcas: From Source Code to Insight. Journal of Chemical Theory and Computation, 15(11), 5925-5964. doi:10.1021/acs.jctc.9b00532 es_ES
dc.description.references Miro, P., Lhiaubet-Vallet, V., Marin, M. L., & Miranda, M. A. (2015). Photosensitized Thymine Dimerization via Delocalized Triplet Excited States. Chemistry - A European Journal, 21(47), 17051-17056. doi:10.1002/chem.201502719 es_ES
dc.description.references Schnappinger, T., Kölle, P., Marazzi, M., Monari, A., González, L., & de Vivie-Riedle, R. (2017). Ab initio molecular dynamics of thiophene: the interplay of internal conversion and intersystem crossing. Physical Chemistry Chemical Physics, 19(37), 25662-25670. doi:10.1039/c7cp05061e es_ES
dc.description.references Francés-Monerris, A., Segarra-Martí, J., Merchán, M., & Roca-Sanjuán, D. (2016). Theoretical study on the excited-state π-stacking versus intermolecular hydrogen-transfer processes in the guanine–cytosine/cytosine trimer. Theoretical Chemistry Accounts, 135(2). doi:10.1007/s00214-015-1762-z es_ES
dc.description.references González-Luque, R., Climent, T., González-Ramírez, I., Merchán, M., & Serrano-Andrés, L. (2010). Singlet−Triplet States Interaction Regions in DNA/RNA Nucleobase Hypersurfaces. Journal of Chemical Theory and Computation, 6(7), 2103-2114. doi:10.1021/ct100164m es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem