Skalska, K., Miller, J. S., & Ledakowicz, S. (2010). Trends in NO abatement: A review. Science of The Total Environment, 408(19), 3976-3989. doi:10.1016/j.scitotenv.2010.06.001
Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. F., & Szanyi, J. (2015). Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chemical Society Reviews, 44(20), 7371-7405. doi:10.1039/c5cs00108k
Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095
[+]
Skalska, K., Miller, J. S., & Ledakowicz, S. (2010). Trends in NO abatement: A review. Science of The Total Environment, 408(19), 3976-3989. doi:10.1016/j.scitotenv.2010.06.001
Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. F., & Szanyi, J. (2015). Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chemical Society Reviews, 44(20), 7371-7405. doi:10.1039/c5cs00108k
Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095
Fickel, D. W., D’Addio, E., Lauterbach, J. A., & Lobo, R. F. (2011). The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Applied Catalysis B: Environmental, 102(3-4), 441-448. doi:10.1016/j.apcatb.2010.12.022
Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g
Schmeisser, V., Weibel, M., Sebastian Hernando, L., Nova, I., Tronconi, E., & Ruggeri, M. P. (2013). Cold Start Effect Phenomena over Zeolite SCR Catalysts for Exhaust Gas Aftertreatment. SAE International Journal of Commercial Vehicles, 6(1), 190-199. doi:10.4271/2013-01-1064
Zheng, Y., Kovarik, L., Engelhard, M. H., Wang, Y., Wang, Y., Gao, F., & Szanyi, J. (2017). Low-Temperature Pd/Zeolite Passive NOx Adsorbers: Structure, Performance, and Adsorption Chemistry. The Journal of Physical Chemistry C, 121(29), 15793-15803. doi:10.1021/acs.jpcc.7b04312
Moliner, M., & Corma, A. (2019). From metal-supported oxides to well-defined metal site zeolites: the next generation of passive NOxadsorbers for low-temperature control of emissions from diesel engines. Reaction Chemistry & Engineering, 4(2), 223-234. doi:10.1039/c8re00193f
Gu, Y., & Epling, W. S. (2019). Passive NOx adsorber: An overview of catalyst performance and reaction chemistry. Applied Catalysis A: General, 570, 1-14. doi:10.1016/j.apcata.2018.10.036
Lee, J., Ryou, Y., Cho, S. J., Lee, H., Kim, C. H., & Kim, D. H. (2018). Investigation of the active sites and optimum Pd/Al of Pd/ZSM–5 passive NO adsorbers for the cold-start application: Evidence of isolated-Pd species obtained after a high-temperature thermal treatment. Applied Catalysis B: Environmental, 226, 71-82. doi:10.1016/j.apcatb.2017.12.031
Khivantsev, K., Jaegers, N. R., Kovarik, L., Hanson, J. C., Tao, F. (Feng), Tang, Y., … Szanyi, J. (2018). Achieving Atomic Dispersion of Highly Loaded Transition Metals in Small‐Pore Zeolite SSZ‐13: High‐Capacity and High‐Efficiency Low‐Temperature CO and Passive NO
x
Adsorbers. Angewandte Chemie International Edition, 57(51), 16672-16677. doi:10.1002/anie.201809343
Vu, A., Luo, J., Li, J., & Epling, W. S. (2017). Effects of CO on Pd/BEA Passive NOx Adsorbers. Catalysis Letters, 147(3), 745-750. doi:10.1007/s10562-017-1976-x
Ryou, Y., Lee, J., Kim, Y., Hwang, S., Lee, H., Kim, C. H., & Kim, D. H. (2019). Effect of reduction treatments (H2 vs. CO) on the NO adsorption ability and the physicochemical properties of Pd/SSZ-13 passive NOx adsorber for cold start application. Applied Catalysis A: General, 569, 28-34. doi:10.1016/j.apcata.2018.10.016
Ryou, Y., Lee, J., Lee, H., Kim, C. H., & Kim, D. H. (2019). Effect of various activation conditions on the low temperature NO adsorption performance of Pd/SSZ-13 passive NOx adsorber. Catalysis Today, 320, 175-180. doi:10.1016/j.cattod.2017.11.030
Gu, Y., Zelinsky, R. P., Chen, Y.-R., & Epling, W. S. (2019). Investigation of an irreversible NOx storage degradation Mode on a Pd/BEA passive NOx adsorber. Applied Catalysis B: Environmental, 258, 118032. doi:10.1016/j.apcatb.2019.118032
Khivantsev, K., Jaegers, N. R., Kovarik, L., Prodinger, S., Derewinski, M. A., Wang, Y., … Szanyi, J. (2019). Palladium/Beta zeolite passive NOx adsorbers (PNA): Clarification of PNA chemistry and the effects of CO and zeolite crystallite size on PNA performance. Applied Catalysis A: General, 569, 141-148. doi:10.1016/j.apcata.2018.10.021
Ryou, Y., Lee, J., Cho, S. J., Lee, H., Kim, C. H., & Kim, D. H. (2017). Activation of Pd/SSZ-13 catalyst by hydrothermal aging treatment in passive NO adsorption performance at low temperature for cold start application. Applied Catalysis B: Environmental, 212, 140-149. doi:10.1016/j.apcatb.2017.04.077
Wang, N., Sun, Q., Bai, R., Li, X., Guo, G., & Yu, J. (2016). In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation. Journal of the American Chemical Society, 138(24), 7484-7487. doi:10.1021/jacs.6b03518
Goel, S., Zones, S. I., & Iglesia, E. (2014). Encapsulation of Metal Clusters within MFI via Interzeolite Transformations and Direct Hydrothermal Syntheses and Catalytic Consequences of Their Confinement. Journal of the American Chemical Society, 136(43), 15280-15290. doi:10.1021/ja507956m
Liu, L., Lopez-Haro, M., Lopes, C. W., Li, C., Concepcion, P., Simonelli, L., … Corma, A. (2019). Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nature Materials, 18(8), 866-873. doi:10.1038/s41563-019-0412-6
Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757
KOKOTAILO, G. T., LAWTON, S. L., OLSON, D. H., & MEIER, W. M. (1978). Structure of synthetic zeolite ZSM-5. Nature, 272(5652), 437-438. doi:10.1038/272437a0
Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910
Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592
Corma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9
Rutkowska, M., Díaz, U., Palomares, A. E., & Chmielarz, L. (2015). Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNO x process. Applied Catalysis B: Environmental, 168-169, 531-539. doi:10.1016/j.apcatb.2015.01.016
Margarit, V. J., Martínez-Armero, M. E., Navarro, M. T., Martínez, C., & Corma, A. (2015). Direct Dual-Template Synthesis of MWW Zeolite Monolayers. Angewandte Chemie International Edition, 54(46), 13724-13728. doi:10.1002/anie.201506822
Luo, H. Y., Michaelis, V. K., Hodges, S., Griffin, R. G., & Román-Leshkov, Y. (2015). One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science, 6(11), 6320-6324. doi:10.1039/c5sc01912e
Gallego, E. M., Paris, C., Martínez, C., Moliner, M., & Corma, A. (2018). Nanosized MCM-22 zeolite using simple non-surfactant organic growth modifiers: synthesis and catalytic applications. Chemical Communications, 54(71), 9989-9992. doi:10.1039/c8cc05356a
Corma, A., Corell, C., & Pérez-Pariente, J. (1995). Synthesis and characterization of the MCM-22 zeolite. Zeolites, 15(1), 2-8. doi:10.1016/0144-2449(94)00013-i
Argyle, M., & Bartholomew, C. (2015). Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts, 5(1), 145-269. doi:10.3390/catal5010145
[-]