- -

Deactivation and regeneration studies on Pd-containing medium pore zeolites as passive NOx adsorbers (PNAs) in cold-start applications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Deactivation and regeneration studies on Pd-containing medium pore zeolites as passive NOx adsorbers (PNAs) in cold-start applications

Show simple item record

Files in this item

dc.contributor.author Bello-Jurado, Estefanía es_ES
dc.contributor.author Margarit Benavent, Vicente Juan es_ES
dc.contributor.author Gallego-Sánchez, Eva María es_ES
dc.contributor.author Schuetze, Frank es_ES
dc.contributor.author Hengst, Christoph es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.date.accessioned 2021-03-25T04:31:59Z
dc.date.available 2021-03-25T04:31:59Z
dc.date.issued 2020-08-01 es_ES
dc.identifier.issn 1387-1811 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164226
dc.description.abstract [EN] Two Pd-containing medium pore zeolite frameworks, MFI and MWW, have been evaluated as passive NOx adsorbers (PNAs) in automotive applications. The NOx adsorption/desorption behavior of Pd-containing standard ZSM-5 and MCM-22 zeolites with analogous physico-chemical properties (Si/Al similar to 10-12, 1%wt Pd, crystal size of similar to 200-400 nm), has been first studied. Pd/ZSM-5 shows better low-temperature NOx capacity than Pd/MCM-22 (0.83 and 0.55 mu mol NOx/mu mol Pd), but, in contrast, Pd/MCM-22 is able to desorb NOx at remarkable lower temperatures (similar to 50 degrees C fewer). In order to evaluate the influence of the textural properties of the MWW-type materials on the NOx adsorption/desorption behavior, a delaminated DS-ITQ-2 and nano-MCM-22, have also been prepared. The deactivation of the different Pd-containing medium pore zeolites and their posterior regeneration have been systematically studied by subjecting the samples to CO-ageing treatments at different temperatures (from 150 to 650 degrees C) and hydrothermal treatments at 750 degrees C, respectively. Pd/ZSM-5 is able to almost fully recovery the former NOx adsorption capacity, whereas Pd/MWW materials only recuperate half of their initial NOx adsorption capacity, fact that can be explained by the larger critical sizes of part of the agglomerated metal particles on the external surface of these materials. es_ES
dc.description.sponsorship This work has been supported by Umicore and by the Spanish Government through SEV-2016-0683 and RTI2018-101033-B-I00 (MCIU/AEI/FEDER, UE). E.B. acknowledges the Spanish Government-MCIU for a FPI scholarship. E.M.G. acknowledges "La Caixa -Severo Ochoa" International PhD Fellowships (call 2015). We thank I. Millet for technical assistance. The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Microporous and Mesoporous Materials es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Medium-pore zeolites es_ES
dc.subject Nitrogen oxides (NOx) es_ES
dc.subject Selective catalytic reduction (SCR) es_ES
dc.subject Passive NOx adsorbers (PNAs) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Deactivation and regeneration studies on Pd-containing medium pore zeolites as passive NOx adsorbers (PNAs) in cold-start applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.micromeso.2020.110222 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Bello-Jurado, E.; Margarit Benavent, VJ.; Gallego-Sánchez, EM.; Schuetze, F.; Hengst, C.; Corma Canós, A.; Moliner Marin, M. (2020). Deactivation and regeneration studies on Pd-containing medium pore zeolites as passive NOx adsorbers (PNAs) in cold-start applications. Microporous and Mesoporous Materials. 302:1-10. https://doi.org/10.1016/j.micromeso.2020.110222 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.micromeso.2020.110222 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 302 es_ES
dc.relation.pasarela S\424854 es_ES
dc.contributor.funder Umicore es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Skalska, K., Miller, J. S., & Ledakowicz, S. (2010). Trends in NO abatement: A review. Science of The Total Environment, 408(19), 3976-3989. doi:10.1016/j.scitotenv.2010.06.001 es_ES
dc.description.references Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. F., & Szanyi, J. (2015). Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chemical Society Reviews, 44(20), 7371-7405. doi:10.1039/c5cs00108k es_ES
dc.description.references Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095 es_ES
dc.description.references Fickel, D. W., D’Addio, E., Lauterbach, J. A., & Lobo, R. F. (2011). The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Applied Catalysis B: Environmental, 102(3-4), 441-448. doi:10.1016/j.apcatb.2010.12.022 es_ES
dc.description.references Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g es_ES
dc.description.references Schmeisser, V., Weibel, M., Sebastian Hernando, L., Nova, I., Tronconi, E., & Ruggeri, M. P. (2013). Cold Start Effect Phenomena over Zeolite SCR Catalysts for Exhaust Gas Aftertreatment. SAE International Journal of Commercial Vehicles, 6(1), 190-199. doi:10.4271/2013-01-1064 es_ES
dc.description.references Zheng, Y., Kovarik, L., Engelhard, M. H., Wang, Y., Wang, Y., Gao, F., & Szanyi, J. (2017). Low-Temperature Pd/Zeolite Passive NOx Adsorbers: Structure, Performance, and Adsorption Chemistry. The Journal of Physical Chemistry C, 121(29), 15793-15803. doi:10.1021/acs.jpcc.7b04312 es_ES
dc.description.references Moliner, M., & Corma, A. (2019). From metal-supported oxides to well-defined metal site zeolites: the next generation of passive NOxadsorbers for low-temperature control of emissions from diesel engines. Reaction Chemistry & Engineering, 4(2), 223-234. doi:10.1039/c8re00193f es_ES
dc.description.references Gu, Y., & Epling, W. S. (2019). Passive NOx adsorber: An overview of catalyst performance and reaction chemistry. Applied Catalysis A: General, 570, 1-14. doi:10.1016/j.apcata.2018.10.036 es_ES
dc.description.references Lee, J., Ryou, Y., Cho, S. J., Lee, H., Kim, C. H., & Kim, D. H. (2018). Investigation of the active sites and optimum Pd/Al of Pd/ZSM–5 passive NO adsorbers for the cold-start application: Evidence of isolated-Pd species obtained after a high-temperature thermal treatment. Applied Catalysis B: Environmental, 226, 71-82. doi:10.1016/j.apcatb.2017.12.031 es_ES
dc.description.references Khivantsev, K., Jaegers, N. R., Kovarik, L., Hanson, J. C., Tao, F. (Feng), Tang, Y., … Szanyi, J. (2018). Achieving Atomic Dispersion of Highly Loaded Transition Metals in Small‐Pore Zeolite SSZ‐13: High‐Capacity and High‐Efficiency Low‐Temperature CO and Passive NO x Adsorbers. Angewandte Chemie International Edition, 57(51), 16672-16677. doi:10.1002/anie.201809343 es_ES
dc.description.references Vu, A., Luo, J., Li, J., & Epling, W. S. (2017). Effects of CO on Pd/BEA Passive NOx Adsorbers. Catalysis Letters, 147(3), 745-750. doi:10.1007/s10562-017-1976-x es_ES
dc.description.references Ryou, Y., Lee, J., Kim, Y., Hwang, S., Lee, H., Kim, C. H., & Kim, D. H. (2019). Effect of reduction treatments (H2 vs. CO) on the NO adsorption ability and the physicochemical properties of Pd/SSZ-13 passive NOx adsorber for cold start application. Applied Catalysis A: General, 569, 28-34. doi:10.1016/j.apcata.2018.10.016 es_ES
dc.description.references Ryou, Y., Lee, J., Lee, H., Kim, C. H., & Kim, D. H. (2019). Effect of various activation conditions on the low temperature NO adsorption performance of Pd/SSZ-13 passive NOx adsorber. Catalysis Today, 320, 175-180. doi:10.1016/j.cattod.2017.11.030 es_ES
dc.description.references Gu, Y., Zelinsky, R. P., Chen, Y.-R., & Epling, W. S. (2019). Investigation of an irreversible NOx storage degradation Mode on a Pd/BEA passive NOx adsorber. Applied Catalysis B: Environmental, 258, 118032. doi:10.1016/j.apcatb.2019.118032 es_ES
dc.description.references Khivantsev, K., Jaegers, N. R., Kovarik, L., Prodinger, S., Derewinski, M. A., Wang, Y., … Szanyi, J. (2019). Palladium/Beta zeolite passive NOx adsorbers (PNA): Clarification of PNA chemistry and the effects of CO and zeolite crystallite size on PNA performance. Applied Catalysis A: General, 569, 141-148. doi:10.1016/j.apcata.2018.10.021 es_ES
dc.description.references Ryou, Y., Lee, J., Cho, S. J., Lee, H., Kim, C. H., & Kim, D. H. (2017). Activation of Pd/SSZ-13 catalyst by hydrothermal aging treatment in passive NO adsorption performance at low temperature for cold start application. Applied Catalysis B: Environmental, 212, 140-149. doi:10.1016/j.apcatb.2017.04.077 es_ES
dc.description.references Wang, N., Sun, Q., Bai, R., Li, X., Guo, G., & Yu, J. (2016). In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation. Journal of the American Chemical Society, 138(24), 7484-7487. doi:10.1021/jacs.6b03518 es_ES
dc.description.references Goel, S., Zones, S. I., & Iglesia, E. (2014). Encapsulation of Metal Clusters within MFI via Interzeolite Transformations and Direct Hydrothermal Syntheses and Catalytic Consequences of Their Confinement. Journal of the American Chemical Society, 136(43), 15280-15290. doi:10.1021/ja507956m es_ES
dc.description.references Liu, L., Lopez-Haro, M., Lopes, C. W., Li, C., Concepcion, P., Simonelli, L., … Corma, A. (2019). Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nature Materials, 18(8), 866-873. doi:10.1038/s41563-019-0412-6 es_ES
dc.description.references Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757 es_ES
dc.description.references KOKOTAILO, G. T., LAWTON, S. L., OLSON, D. H., & MEIER, W. M. (1978). Structure of synthetic zeolite ZSM-5. Nature, 272(5652), 437-438. doi:10.1038/272437a0 es_ES
dc.description.references Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910 es_ES
dc.description.references Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 es_ES
dc.description.references Corma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9 es_ES
dc.description.references Rutkowska, M., Díaz, U., Palomares, A. E., & Chmielarz, L. (2015). Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNO x process. Applied Catalysis B: Environmental, 168-169, 531-539. doi:10.1016/j.apcatb.2015.01.016 es_ES
dc.description.references Margarit, V. J., Martínez-Armero, M. E., Navarro, M. T., Martínez, C., & Corma, A. (2015). Direct Dual-Template Synthesis of MWW Zeolite Monolayers. Angewandte Chemie International Edition, 54(46), 13724-13728. doi:10.1002/anie.201506822 es_ES
dc.description.references Luo, H. Y., Michaelis, V. K., Hodges, S., Griffin, R. G., & Román-Leshkov, Y. (2015). One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science, 6(11), 6320-6324. doi:10.1039/c5sc01912e es_ES
dc.description.references Gallego, E. M., Paris, C., Martínez, C., Moliner, M., & Corma, A. (2018). Nanosized MCM-22 zeolite using simple non-surfactant organic growth modifiers: synthesis and catalytic applications. Chemical Communications, 54(71), 9989-9992. doi:10.1039/c8cc05356a es_ES
dc.description.references Corma, A., Corell, C., & Pérez-Pariente, J. (1995). Synthesis and characterization of the MCM-22 zeolite. Zeolites, 15(1), 2-8. doi:10.1016/0144-2449(94)00013-i es_ES
dc.description.references Argyle, M., & Bartholomew, C. (2015). Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts, 5(1), 145-269. doi:10.3390/catal5010145 es_ES


This item appears in the following Collection(s)

Show simple item record