Mostrar el registro sencillo del ítem
dc.contributor.author | Belda, R. | es_ES |
dc.contributor.author | Palomar-Toledano, Marta | es_ES |
dc.contributor.author | Marco, Miguel | es_ES |
dc.contributor.author | Vercher Martínez, Ana | es_ES |
dc.contributor.author | Giner Maravilla, Eugenio | es_ES |
dc.date.accessioned | 2021-03-26T04:30:38Z | |
dc.date.available | 2021-03-26T04:30:38Z | |
dc.date.issued | 2021-01 | es_ES |
dc.identifier.issn | 0928-4931 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/164414 | |
dc.description.abstract | [EN] Open cell polyurethane foams are often used as cancellous bone surrogates because of their similarities in morphology and mechanical response. In this work, open cell polyurethane foams of three different densities are characterized from morphometric and mechanical perspectives. The analysis of micro-computed tomography images has revealed that the high density foams present the greatest inhomogeneities. Those inhomogeneities promoted the failure location. We have used the finite element models as a tool to estimate elastic and failure properties that can be used in numerical modeling. Furthermore, we have assessed the anisotropic mechanical response of the foams, whose differences are related to the morphometric inhomogeneities. We found significant relationships between morphometry and the elastic and failure response. The detailed information about morphometry, elastic constants and strength limits provided in this work can be of interest to researchers and practitioners that often use these polyurethane foams in orthopedic implants and cement augmentation evaluations. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministerio de Ciencia, Innovaci on y Universidades grant numbers DPI2013-46641-R and DPI2017-89197-C2-2-R and the Generalitat Valenciana (Programme PROMETEO 2016/007). The micro-CT acquisitions were performed at CENIEH facilities with the collaboration of CENIEH staff. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Materials Science and Engineering C | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Compression fracture characterization | es_ES |
dc.subject | Open cell foam | es_ES |
dc.subject | Micro-FE | es_ES |
dc.subject | Digital image correlation | es_ES |
dc.subject | Morphometric characterization | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Open cell polyurethane foam compression failure characterization and its relationship to morphometry | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.msec.2020.111754 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-2-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2013-46641-R/ES/DESARROLLO DE MODELOS MICROESTRUCTURALES DE TEJIDO OSEO Y APLICACION A PROCEDIMIENTOS DE EVALUACION DEL RIESGO DE FRACTURA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Belda, R.; Palomar-Toledano, M.; Marco, M.; Vercher Martínez, A.; Giner Maravilla, E. (2021). Open cell polyurethane foam compression failure characterization and its relationship to morphometry. Materials Science and Engineering C. 120:1-13. https://doi.org/10.1016/j.msec.2020.111754 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.msec.2020.111754 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 120 | es_ES |
dc.identifier.pmid | 33545895 | es_ES |
dc.relation.pasarela | S\422731 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Fürst, D., Senck, S., Hollensteiner, M., Esterer, B., Augat, P., Eckstein, F., & Schrempf, A. (2017). Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone. Materials Science and Engineering: C, 76, 1103-1111. doi:10.1016/j.msec.2017.03.158 | es_ES |
dc.description.references | Mueller, T. L., Basler, S. E., Müller, R., & van Lenthe, G. H. (2013). Time-lapsed imaging of implant fixation failure in human femoral heads. Medical Engineering & Physics, 35(5), 636-643. doi:10.1016/j.medengphy.2012.07.009 | es_ES |
dc.description.references | Chao, C.-K., & Hsiao, C.-C. (2006). Parametric Study on Bone Screw Designs for Holding Power. Journal of Mechanics, 22(1), 13-18. doi:10.1017/s1727719100000733 | es_ES |
dc.description.references | Johnson, A. E., & Keller, T. S. (2007). Mechanical properties of open-cell foam synthetic thoracic vertebrae. Journal of Materials Science: Materials in Medicine, 19(3), 1317-1323. doi:10.1007/s10856-007-3158-7 | es_ES |
dc.description.references | Menges, G., & Knipschild, F. (1975). Estimation of mechanical properties for rigid polyurethane foams. Polymer Engineering and Science, 15(8), 623-627. doi:10.1002/pen.760150810 | es_ES |
dc.description.references | Szivek, J. A., Thompson, J. D., & Benjamin, J. B. (1995). Characterization of three formulations of a synthetic foam as models for a range of human cancellous bone types. Journal of Applied Biomaterials, 6(2), 125-128. doi:10.1002/jab.770060207 | es_ES |
dc.description.references | Patel, P. S., Shepherd, D. E., & Hukins, D. W. (2008). Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone. BMC Musculoskeletal Disorders, 9(1). doi:10.1186/1471-2474-9-137 | es_ES |
dc.description.references | Gómez, S., Vlad, M. D., López, J., Navarro, M., & Fernández, E. (2013). Characterization and three-dimensional reconstruction of synthetic bone model foams. Materials Science and Engineering: C, 33(6), 3329-3335. doi:10.1016/j.msec.2013.04.013 | es_ES |
dc.description.references | Zhao, Y., Robson Brown, K. A., Jin, Z. M., & Wilcox, R. K. (2012). Trabecular Level Analysis of Bone Cement Augmentation: A Comparative Experimental and Finite Element Study. Annals of Biomedical Engineering, 40(10), 2168-2176. doi:10.1007/s10439-012-0587-3 | es_ES |
dc.description.references | Youssef, S., Maire, E., & Gaertner, R. (2005). Finite element modelling of the actual structure of cellular materials determined by X-ray tomography. Acta Materialia, 53(3), 719-730. doi:10.1016/j.actamat.2004.10.024 | es_ES |
dc.description.references | Thompson, M. S., McCarthy, I. D., Lidgren, L., & Ryd, L. (2003). Compressive and Shear Properties of Commercially Available Polyurethane Foams. Journal of Biomechanical Engineering, 125(5), 732-734. doi:10.1115/1.1614820 | es_ES |
dc.description.references | Marsavina, L., Constantinescu, D. M., Linul, E., Voiconi, T., & Apostol, D. A. (2015). Shear and mode II fracture of PUR foams. Engineering Failure Analysis, 58, 465-476. doi:10.1016/j.engfailanal.2015.05.021 | es_ES |
dc.description.references | Marsavina, L., Constantinescu, D. M., Linul, E., Stuparu, F. A., & Apostol, D. A. (2016). Experimental and numerical crack paths in PUR foams. Engineering Fracture Mechanics, 167, 68-83. doi:10.1016/j.engfracmech.2016.03.043 | es_ES |
dc.description.references | H. Jin, W.Y. Lu, S. Hong, K. Connelly, Fracture Behavior of Polyurethane Foams, Proc. 2007 SEM Annu. Conf. Expo. Springfield, Massachusetts, June 4-6, 2007. doi:https://doi.org/10.1115/IMECE2007-42732. | es_ES |
dc.description.references | Chiang, F.-P., & Ding, Y. (2008). Size effect on stress–strain relation of neat polyurethane foam. Composites Part B: Engineering, 39(1), 42-49. doi:10.1016/j.compositesb.2007.02.011 | es_ES |
dc.description.references | M.A. Sutton, J.J. Orteu, H. Schreier, Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications 2009, Springer Science + Business Media (233 Spring street, New York, NY 10013, USA). ISBN: 9780387787473. doi:https://doi.org/10.1007/978-0-387-78747-3. | es_ES |
dc.description.references | Bay, B. K. (1995). Texture correlation: A method for the measurement of detailed strain distributions within trabecular bone. Journal of Orthopaedic Research, 13(2), 258-267. doi:10.1002/jor.1100130214 | es_ES |
dc.description.references | Belda, R., Palomar, M., Peris-Serra, J. L., Vercher-Martínez, A., & Giner, E. (2020). Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling. International Journal of Mechanical Sciences, 165, 105213. doi:10.1016/j.ijmecsci.2019.105213 | es_ES |
dc.description.references | B. Koohbor, S. Ravindran, A. Kidane, Effects of cell-wall instability and local failure on the response of closed-cell polymeric foams subjected to dynamic loading, Mech. Mater. 116 (2018), pp. 67–6. doi:https://doi.org/10.1016/j.mechmat.2017.03.017. | es_ES |
dc.description.references | Bai, T., Dong, B., Xiao, M., Liu, H., Wang, N., Wang, Y., … Guo, Z. (2018). Polystyrene Foam with High Cell Density and Small Cell Size by Compression-Injection Molding and Core Back Foaming Technique: Evolution of Cells in Cavity. Macromolecular Materials and Engineering, 303(9), 1800110. doi:10.1002/mame.201800110 | es_ES |
dc.description.references | Pyka, G., Kerckhofs, G., Schrooten, J., & Wevers, M. (2014). The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures. Materials Characterization, 87, 104-115. doi:10.1016/j.matchar.2013.11.004 | es_ES |
dc.description.references | Ün, K., Bevill, G., & Keaveny, T. M. (2006). The effects of side-artifacts on the elastic modulus of trabecular bone. Journal of Biomechanics, 39(11), 1955-1963. doi:10.1016/j.jbiomech.2006.05.012 | es_ES |
dc.description.references | Odgaard, A., & Linde, F. (1991). The underestimation of Young’s modulus in compressive testing of cancellous bone specimens. Journal of Biomechanics, 24(8), 691-698. doi:10.1016/0021-9290(91)90333-i | es_ES |
dc.description.references | Keaveny, T. M., Borchers, R. E., Gibson, L. J., & Hayes, W. C. (1993). Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. Journal of Biomechanics, 26(4-5), 599-607. doi:10.1016/0021-9290(93)90021-6 | es_ES |
dc.description.references | Hambli, R. (2013). Micro-CT finite element model and experimental validation of trabecular bone damage and fracture. Bone, 56(2), 363-374. doi:10.1016/j.bone.2013.06.028 | es_ES |
dc.description.references | Lemaitre, J. (1985). A Continuous Damage Mechanics Model for Ductile Fracture. Journal of Engineering Materials and Technology, 107(1), 83-89. doi:10.1115/1.3225775 | es_ES |
dc.description.references | Kopperdahl, D. L., & Keaveny, T. M. (1998). Yield strain behavior of trabecular bone. Journal of Biomechanics, 31(7), 601-608. doi:10.1016/s0021-9290(98)00057-8 | es_ES |
dc.description.references | Niebur, G. L., Feldstein, M. J., Yuen, J. C., Chen, T. J., & Keaveny, T. M. (2000). High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. Journal of Biomechanics, 33(12), 1575-1583. doi:10.1016/s0021-9290(00)00149-4 | es_ES |
dc.description.references | Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27-35. doi:10.1016/s0021-9290(03)00257-4 | es_ES |
dc.description.references | Carretta, R., Stüssi, E., Müller, R., & Lorenzetti, S. (2013). Within subject heterogeneity in tissue-level post-yield mechanical and material properties in human trabecular bone. Journal of the Mechanical Behavior of Biomedical Materials, 24, 64-73. doi:10.1016/j.jmbbm.2013.04.014 | es_ES |
dc.description.references | Ulrich, D., van Rietbergen, B., Laib, A., & R̈uegsegger, P. (1999). The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone, 25(1), 55-60. doi:10.1016/s8756-3282(99)00098-8 | es_ES |
dc.description.references | Gómez González, S., Valera Jiménez, J. F., Cabestany Bastida, G., Vlad, M. D., López López, J., & Fernández Aguado, E. (2020). Synthetic open cell foams versus a healthy human vertebra: Anisotropy, fluid flow and μ-CT structural studies. Materials Science and Engineering: C, 108, 110404. doi:10.1016/j.msec.2019.110404 | es_ES |