- -

Open cell polyurethane foam compression failure characterization and its relationship to morphometry

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Open cell polyurethane foam compression failure characterization and its relationship to morphometry

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Belda, R. es_ES
dc.contributor.author Palomar-Toledano, Marta es_ES
dc.contributor.author Marco, Miguel es_ES
dc.contributor.author Vercher Martínez, Ana es_ES
dc.contributor.author Giner Maravilla, Eugenio es_ES
dc.date.accessioned 2021-03-26T04:30:38Z
dc.date.available 2021-03-26T04:30:38Z
dc.date.issued 2021-01 es_ES
dc.identifier.issn 0928-4931 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164414
dc.description.abstract [EN] Open cell polyurethane foams are often used as cancellous bone surrogates because of their similarities in morphology and mechanical response. In this work, open cell polyurethane foams of three different densities are characterized from morphometric and mechanical perspectives. The analysis of micro-computed tomography images has revealed that the high density foams present the greatest inhomogeneities. Those inhomogeneities promoted the failure location. We have used the finite element models as a tool to estimate elastic and failure properties that can be used in numerical modeling. Furthermore, we have assessed the anisotropic mechanical response of the foams, whose differences are related to the morphometric inhomogeneities. We found significant relationships between morphometry and the elastic and failure response. The detailed information about morphometry, elastic constants and strength limits provided in this work can be of interest to researchers and practitioners that often use these polyurethane foams in orthopedic implants and cement augmentation evaluations. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Ciencia, Innovaci on y Universidades grant numbers DPI2013-46641-R and DPI2017-89197-C2-2-R and the Generalitat Valenciana (Programme PROMETEO 2016/007). The micro-CT acquisitions were performed at CENIEH facilities with the collaboration of CENIEH staff. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Materials Science and Engineering C es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Compression fracture characterization es_ES
dc.subject Open cell foam es_ES
dc.subject Micro-FE es_ES
dc.subject Digital image correlation es_ES
dc.subject Morphometric characterization es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Open cell polyurethane foam compression failure characterization and its relationship to morphometry es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.msec.2020.111754 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-2-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-46641-R/ES/DESARROLLO DE MODELOS MICROESTRUCTURALES DE TEJIDO OSEO Y APLICACION A PROCEDIMIENTOS DE EVALUACION DEL RIESGO DE FRACTURA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Belda, R.; Palomar-Toledano, M.; Marco, M.; Vercher Martínez, A.; Giner Maravilla, E. (2021). Open cell polyurethane foam compression failure characterization and its relationship to morphometry. Materials Science and Engineering C. 120:1-13. https://doi.org/10.1016/j.msec.2020.111754 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.msec.2020.111754 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 120 es_ES
dc.identifier.pmid 33545895 es_ES
dc.relation.pasarela S\422731 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Fürst, D., Senck, S., Hollensteiner, M., Esterer, B., Augat, P., Eckstein, F., & Schrempf, A. (2017). Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone. Materials Science and Engineering: C, 76, 1103-1111. doi:10.1016/j.msec.2017.03.158 es_ES
dc.description.references Mueller, T. L., Basler, S. E., Müller, R., & van Lenthe, G. H. (2013). Time-lapsed imaging of implant fixation failure in human femoral heads. Medical Engineering & Physics, 35(5), 636-643. doi:10.1016/j.medengphy.2012.07.009 es_ES
dc.description.references Chao, C.-K., & Hsiao, C.-C. (2006). Parametric Study on Bone Screw Designs for Holding Power. Journal of Mechanics, 22(1), 13-18. doi:10.1017/s1727719100000733 es_ES
dc.description.references Johnson, A. E., & Keller, T. S. (2007). Mechanical properties of open-cell foam synthetic thoracic vertebrae. Journal of Materials Science: Materials in Medicine, 19(3), 1317-1323. doi:10.1007/s10856-007-3158-7 es_ES
dc.description.references Menges, G., & Knipschild, F. (1975). Estimation of mechanical properties for rigid polyurethane foams. Polymer Engineering and Science, 15(8), 623-627. doi:10.1002/pen.760150810 es_ES
dc.description.references Szivek, J. A., Thompson, J. D., & Benjamin, J. B. (1995). Characterization of three formulations of a synthetic foam as models for a range of human cancellous bone types. Journal of Applied Biomaterials, 6(2), 125-128. doi:10.1002/jab.770060207 es_ES
dc.description.references Patel, P. S., Shepherd, D. E., & Hukins, D. W. (2008). Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone. BMC Musculoskeletal Disorders, 9(1). doi:10.1186/1471-2474-9-137 es_ES
dc.description.references Gómez, S., Vlad, M. D., López, J., Navarro, M., & Fernández, E. (2013). Characterization and three-dimensional reconstruction of synthetic bone model foams. Materials Science and Engineering: C, 33(6), 3329-3335. doi:10.1016/j.msec.2013.04.013 es_ES
dc.description.references Zhao, Y., Robson Brown, K. A., Jin, Z. M., & Wilcox, R. K. (2012). Trabecular Level Analysis of Bone Cement Augmentation: A Comparative Experimental and Finite Element Study. Annals of Biomedical Engineering, 40(10), 2168-2176. doi:10.1007/s10439-012-0587-3 es_ES
dc.description.references Youssef, S., Maire, E., & Gaertner, R. (2005). Finite element modelling of the actual structure of cellular materials determined by X-ray tomography. Acta Materialia, 53(3), 719-730. doi:10.1016/j.actamat.2004.10.024 es_ES
dc.description.references Thompson, M. S., McCarthy, I. D., Lidgren, L., & Ryd, L. (2003). Compressive and Shear Properties of Commercially Available Polyurethane Foams. Journal of Biomechanical Engineering, 125(5), 732-734. doi:10.1115/1.1614820 es_ES
dc.description.references Marsavina, L., Constantinescu, D. M., Linul, E., Voiconi, T., & Apostol, D. A. (2015). Shear and mode II fracture of PUR foams. Engineering Failure Analysis, 58, 465-476. doi:10.1016/j.engfailanal.2015.05.021 es_ES
dc.description.references Marsavina, L., Constantinescu, D. M., Linul, E., Stuparu, F. A., & Apostol, D. A. (2016). Experimental and numerical crack paths in PUR foams. Engineering Fracture Mechanics, 167, 68-83. doi:10.1016/j.engfracmech.2016.03.043 es_ES
dc.description.references H. Jin, W.Y. Lu, S. Hong, K. Connelly, Fracture Behavior of Polyurethane Foams, Proc. 2007 SEM Annu. Conf. Expo. Springfield, Massachusetts, June 4-6, 2007. doi:https://doi.org/10.1115/IMECE2007-42732. es_ES
dc.description.references Chiang, F.-P., & Ding, Y. (2008). Size effect on stress–strain relation of neat polyurethane foam. Composites Part B: Engineering, 39(1), 42-49. doi:10.1016/j.compositesb.2007.02.011 es_ES
dc.description.references M.A. Sutton, J.J. Orteu, H. Schreier, Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications 2009, Springer Science + Business Media (233 Spring street, New York, NY 10013, USA). ISBN: 9780387787473. doi:https://doi.org/10.1007/978-0-387-78747-3. es_ES
dc.description.references Bay, B. K. (1995). Texture correlation: A method for the measurement of detailed strain distributions within trabecular bone. Journal of Orthopaedic Research, 13(2), 258-267. doi:10.1002/jor.1100130214 es_ES
dc.description.references Belda, R., Palomar, M., Peris-Serra, J. L., Vercher-Martínez, A., & Giner, E. (2020). Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling. International Journal of Mechanical Sciences, 165, 105213. doi:10.1016/j.ijmecsci.2019.105213 es_ES
dc.description.references B. Koohbor, S. Ravindran, A. Kidane, Effects of cell-wall instability and local failure on the response of closed-cell polymeric foams subjected to dynamic loading, Mech. Mater. 116 (2018), pp. 67–6. doi:https://doi.org/10.1016/j.mechmat.2017.03.017. es_ES
dc.description.references Bai, T., Dong, B., Xiao, M., Liu, H., Wang, N., Wang, Y., … Guo, Z. (2018). Polystyrene Foam with High Cell Density and Small Cell Size by Compression-Injection Molding and Core Back Foaming Technique: Evolution of Cells in Cavity. Macromolecular Materials and Engineering, 303(9), 1800110. doi:10.1002/mame.201800110 es_ES
dc.description.references Pyka, G., Kerckhofs, G., Schrooten, J., & Wevers, M. (2014). The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures. Materials Characterization, 87, 104-115. doi:10.1016/j.matchar.2013.11.004 es_ES
dc.description.references Ün, K., Bevill, G., & Keaveny, T. M. (2006). The effects of side-artifacts on the elastic modulus of trabecular bone. Journal of Biomechanics, 39(11), 1955-1963. doi:10.1016/j.jbiomech.2006.05.012 es_ES
dc.description.references Odgaard, A., & Linde, F. (1991). The underestimation of Young’s modulus in compressive testing of cancellous bone specimens. Journal of Biomechanics, 24(8), 691-698. doi:10.1016/0021-9290(91)90333-i es_ES
dc.description.references Keaveny, T. M., Borchers, R. E., Gibson, L. J., & Hayes, W. C. (1993). Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. Journal of Biomechanics, 26(4-5), 599-607. doi:10.1016/0021-9290(93)90021-6 es_ES
dc.description.references Hambli, R. (2013). Micro-CT finite element model and experimental validation of trabecular bone damage and fracture. Bone, 56(2), 363-374. doi:10.1016/j.bone.2013.06.028 es_ES
dc.description.references Lemaitre, J. (1985). A Continuous Damage Mechanics Model for Ductile Fracture. Journal of Engineering Materials and Technology, 107(1), 83-89. doi:10.1115/1.3225775 es_ES
dc.description.references Kopperdahl, D. L., & Keaveny, T. M. (1998). Yield strain behavior of trabecular bone. Journal of Biomechanics, 31(7), 601-608. doi:10.1016/s0021-9290(98)00057-8 es_ES
dc.description.references Niebur, G. L., Feldstein, M. J., Yuen, J. C., Chen, T. J., & Keaveny, T. M. (2000). High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. Journal of Biomechanics, 33(12), 1575-1583. doi:10.1016/s0021-9290(00)00149-4 es_ES
dc.description.references Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27-35. doi:10.1016/s0021-9290(03)00257-4 es_ES
dc.description.references Carretta, R., Stüssi, E., Müller, R., & Lorenzetti, S. (2013). Within subject heterogeneity in tissue-level post-yield mechanical and material properties in human trabecular bone. Journal of the Mechanical Behavior of Biomedical Materials, 24, 64-73. doi:10.1016/j.jmbbm.2013.04.014 es_ES
dc.description.references Ulrich, D., van Rietbergen, B., Laib, A., & R̈uegsegger, P. (1999). The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone, 25(1), 55-60. doi:10.1016/s8756-3282(99)00098-8 es_ES
dc.description.references Gómez González, S., Valera Jiménez, J. F., Cabestany Bastida, G., Vlad, M. D., López López, J., & Fernández Aguado, E. (2020). Synthetic open cell foams versus a healthy human vertebra: Anisotropy, fluid flow and μ-CT structural studies. Materials Science and Engineering: C, 108, 110404. doi:10.1016/j.msec.2019.110404 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem