- -

Open cell polyurethane foam compression failure characterization and its relationship to morphometry

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Open cell polyurethane foam compression failure characterization and its relationship to morphometry

Mostrar el registro completo del ítem

Belda, R.; Palomar-Toledano, M.; Marco, M.; Vercher Martínez, A.; Giner Maravilla, E. (2021). Open cell polyurethane foam compression failure characterization and its relationship to morphometry. Materials Science and Engineering C. 120:1-13. https://doi.org/10.1016/j.msec.2020.111754

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164414

Ficheros en el ítem

Metadatos del ítem

Título: Open cell polyurethane foam compression failure characterization and its relationship to morphometry
Autor: Belda, R. Palomar-Toledano, Marta Marco, Miguel Vercher Martínez, Ana Giner Maravilla, Eugenio
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] Open cell polyurethane foams are often used as cancellous bone surrogates because of their similarities in morphology and mechanical response. In this work, open cell polyurethane foams of three different densities ...[+]
Palabras clave: Compression fracture characterization , Open cell foam , Micro-FE , Digital image correlation , Morphometric characterization
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Materials Science and Engineering C. (issn: 0928-4931 )
DOI: 10.1016/j.msec.2020.111754
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.msec.2020.111754
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-2-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/
info:eu-repo/grantAgreement/MINECO//DPI2013-46641-R/ES/DESARROLLO DE MODELOS MICROESTRUCTURALES DE TEJIDO OSEO Y APLICACION A PROCEDIMIENTOS DE EVALUACION DEL RIESGO DE FRACTURA/
Agradecimientos:
This work was supported by the Spanish Ministerio de Ciencia, Innovaci on y Universidades grant numbers DPI2013-46641-R and DPI2017-89197-C2-2-R and the Generalitat Valenciana (Programme PROMETEO 2016/007). The micro-CT ...[+]
Tipo: Artículo

References

Fürst, D., Senck, S., Hollensteiner, M., Esterer, B., Augat, P., Eckstein, F., & Schrempf, A. (2017). Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone. Materials Science and Engineering: C, 76, 1103-1111. doi:10.1016/j.msec.2017.03.158

Mueller, T. L., Basler, S. E., Müller, R., & van Lenthe, G. H. (2013). Time-lapsed imaging of implant fixation failure in human femoral heads. Medical Engineering & Physics, 35(5), 636-643. doi:10.1016/j.medengphy.2012.07.009

Chao, C.-K., & Hsiao, C.-C. (2006). Parametric Study on Bone Screw Designs for Holding Power. Journal of Mechanics, 22(1), 13-18. doi:10.1017/s1727719100000733 [+]
Fürst, D., Senck, S., Hollensteiner, M., Esterer, B., Augat, P., Eckstein, F., & Schrempf, A. (2017). Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone. Materials Science and Engineering: C, 76, 1103-1111. doi:10.1016/j.msec.2017.03.158

Mueller, T. L., Basler, S. E., Müller, R., & van Lenthe, G. H. (2013). Time-lapsed imaging of implant fixation failure in human femoral heads. Medical Engineering & Physics, 35(5), 636-643. doi:10.1016/j.medengphy.2012.07.009

Chao, C.-K., & Hsiao, C.-C. (2006). Parametric Study on Bone Screw Designs for Holding Power. Journal of Mechanics, 22(1), 13-18. doi:10.1017/s1727719100000733

Johnson, A. E., & Keller, T. S. (2007). Mechanical properties of open-cell foam synthetic thoracic vertebrae. Journal of Materials Science: Materials in Medicine, 19(3), 1317-1323. doi:10.1007/s10856-007-3158-7

Menges, G., & Knipschild, F. (1975). Estimation of mechanical properties for rigid polyurethane foams. Polymer Engineering and Science, 15(8), 623-627. doi:10.1002/pen.760150810

Szivek, J. A., Thompson, J. D., & Benjamin, J. B. (1995). Characterization of three formulations of a synthetic foam as models for a range of human cancellous bone types. Journal of Applied Biomaterials, 6(2), 125-128. doi:10.1002/jab.770060207

Patel, P. S., Shepherd, D. E., & Hukins, D. W. (2008). Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone. BMC Musculoskeletal Disorders, 9(1). doi:10.1186/1471-2474-9-137

Gómez, S., Vlad, M. D., López, J., Navarro, M., & Fernández, E. (2013). Characterization and three-dimensional reconstruction of synthetic bone model foams. Materials Science and Engineering: C, 33(6), 3329-3335. doi:10.1016/j.msec.2013.04.013

Zhao, Y., Robson Brown, K. A., Jin, Z. M., & Wilcox, R. K. (2012). Trabecular Level Analysis of Bone Cement Augmentation: A Comparative Experimental and Finite Element Study. Annals of Biomedical Engineering, 40(10), 2168-2176. doi:10.1007/s10439-012-0587-3

Youssef, S., Maire, E., & Gaertner, R. (2005). Finite element modelling of the actual structure of cellular materials determined by X-ray tomography. Acta Materialia, 53(3), 719-730. doi:10.1016/j.actamat.2004.10.024

Thompson, M. S., McCarthy, I. D., Lidgren, L., & Ryd, L. (2003). Compressive and Shear Properties of Commercially Available Polyurethane Foams. Journal of Biomechanical Engineering, 125(5), 732-734. doi:10.1115/1.1614820

Marsavina, L., Constantinescu, D. M., Linul, E., Voiconi, T., & Apostol, D. A. (2015). Shear and mode II fracture of PUR foams. Engineering Failure Analysis, 58, 465-476. doi:10.1016/j.engfailanal.2015.05.021

Marsavina, L., Constantinescu, D. M., Linul, E., Stuparu, F. A., & Apostol, D. A. (2016). Experimental and numerical crack paths in PUR foams. Engineering Fracture Mechanics, 167, 68-83. doi:10.1016/j.engfracmech.2016.03.043

H. Jin, W.Y. Lu, S. Hong, K. Connelly, Fracture Behavior of Polyurethane Foams, Proc. 2007 SEM Annu. Conf. Expo. Springfield, Massachusetts, June 4-6, 2007. doi:https://doi.org/10.1115/IMECE2007-42732.

Chiang, F.-P., & Ding, Y. (2008). Size effect on stress–strain relation of neat polyurethane foam. Composites Part B: Engineering, 39(1), 42-49. doi:10.1016/j.compositesb.2007.02.011

M.A. Sutton, J.J. Orteu, H. Schreier, Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications 2009, Springer Science + Business Media (233 Spring street, New York, NY 10013, USA). ISBN: 9780387787473. doi:https://doi.org/10.1007/978-0-387-78747-3.

Bay, B. K. (1995). Texture correlation: A method for the measurement of detailed strain distributions within trabecular bone. Journal of Orthopaedic Research, 13(2), 258-267. doi:10.1002/jor.1100130214

Belda, R., Palomar, M., Peris-Serra, J. L., Vercher-Martínez, A., & Giner, E. (2020). Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling. International Journal of Mechanical Sciences, 165, 105213. doi:10.1016/j.ijmecsci.2019.105213

B. Koohbor, S. Ravindran, A. Kidane, Effects of cell-wall instability and local failure on the response of closed-cell polymeric foams subjected to dynamic loading, Mech. Mater. 116 (2018), pp. 67–6. doi:https://doi.org/10.1016/j.mechmat.2017.03.017.

Bai, T., Dong, B., Xiao, M., Liu, H., Wang, N., Wang, Y., … Guo, Z. (2018). Polystyrene Foam with High Cell Density and Small Cell Size by Compression-Injection Molding and Core Back Foaming Technique: Evolution of Cells in Cavity. Macromolecular Materials and Engineering, 303(9), 1800110. doi:10.1002/mame.201800110

Pyka, G., Kerckhofs, G., Schrooten, J., & Wevers, M. (2014). The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures. Materials Characterization, 87, 104-115. doi:10.1016/j.matchar.2013.11.004

Ün, K., Bevill, G., & Keaveny, T. M. (2006). The effects of side-artifacts on the elastic modulus of trabecular bone. Journal of Biomechanics, 39(11), 1955-1963. doi:10.1016/j.jbiomech.2006.05.012

Odgaard, A., & Linde, F. (1991). The underestimation of Young’s modulus in compressive testing of cancellous bone specimens. Journal of Biomechanics, 24(8), 691-698. doi:10.1016/0021-9290(91)90333-i

Keaveny, T. M., Borchers, R. E., Gibson, L. J., & Hayes, W. C. (1993). Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. Journal of Biomechanics, 26(4-5), 599-607. doi:10.1016/0021-9290(93)90021-6

Hambli, R. (2013). Micro-CT finite element model and experimental validation of trabecular bone damage and fracture. Bone, 56(2), 363-374. doi:10.1016/j.bone.2013.06.028

Lemaitre, J. (1985). A Continuous Damage Mechanics Model for Ductile Fracture. Journal of Engineering Materials and Technology, 107(1), 83-89. doi:10.1115/1.3225775

Kopperdahl, D. L., & Keaveny, T. M. (1998). Yield strain behavior of trabecular bone. Journal of Biomechanics, 31(7), 601-608. doi:10.1016/s0021-9290(98)00057-8

Niebur, G. L., Feldstein, M. J., Yuen, J. C., Chen, T. J., & Keaveny, T. M. (2000). High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. Journal of Biomechanics, 33(12), 1575-1583. doi:10.1016/s0021-9290(00)00149-4

Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27-35. doi:10.1016/s0021-9290(03)00257-4

Carretta, R., Stüssi, E., Müller, R., & Lorenzetti, S. (2013). Within subject heterogeneity in tissue-level post-yield mechanical and material properties in human trabecular bone. Journal of the Mechanical Behavior of Biomedical Materials, 24, 64-73. doi:10.1016/j.jmbbm.2013.04.014

Ulrich, D., van Rietbergen, B., Laib, A., & R̈uegsegger, P. (1999). The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone, 25(1), 55-60. doi:10.1016/s8756-3282(99)00098-8

Gómez González, S., Valera Jiménez, J. F., Cabestany Bastida, G., Vlad, M. D., López López, J., & Fernández Aguado, E. (2020). Synthetic open cell foams versus a healthy human vertebra: Anisotropy, fluid flow and μ-CT structural studies. Materials Science and Engineering: C, 108, 110404. doi:10.1016/j.msec.2019.110404

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem