Fürst, D., Senck, S., Hollensteiner, M., Esterer, B., Augat, P., Eckstein, F., & Schrempf, A. (2017). Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone. Materials Science and Engineering: C, 76, 1103-1111. doi:10.1016/j.msec.2017.03.158
Mueller, T. L., Basler, S. E., Müller, R., & van Lenthe, G. H. (2013). Time-lapsed imaging of implant fixation failure in human femoral heads. Medical Engineering & Physics, 35(5), 636-643. doi:10.1016/j.medengphy.2012.07.009
Chao, C.-K., & Hsiao, C.-C. (2006). Parametric Study on Bone Screw Designs for Holding Power. Journal of Mechanics, 22(1), 13-18. doi:10.1017/s1727719100000733
[+]
Fürst, D., Senck, S., Hollensteiner, M., Esterer, B., Augat, P., Eckstein, F., & Schrempf, A. (2017). Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone. Materials Science and Engineering: C, 76, 1103-1111. doi:10.1016/j.msec.2017.03.158
Mueller, T. L., Basler, S. E., Müller, R., & van Lenthe, G. H. (2013). Time-lapsed imaging of implant fixation failure in human femoral heads. Medical Engineering & Physics, 35(5), 636-643. doi:10.1016/j.medengphy.2012.07.009
Chao, C.-K., & Hsiao, C.-C. (2006). Parametric Study on Bone Screw Designs for Holding Power. Journal of Mechanics, 22(1), 13-18. doi:10.1017/s1727719100000733
Johnson, A. E., & Keller, T. S. (2007). Mechanical properties of open-cell foam synthetic thoracic vertebrae. Journal of Materials Science: Materials in Medicine, 19(3), 1317-1323. doi:10.1007/s10856-007-3158-7
Menges, G., & Knipschild, F. (1975). Estimation of mechanical properties for rigid polyurethane foams. Polymer Engineering and Science, 15(8), 623-627. doi:10.1002/pen.760150810
Szivek, J. A., Thompson, J. D., & Benjamin, J. B. (1995). Characterization of three formulations of a synthetic foam as models for a range of human cancellous bone types. Journal of Applied Biomaterials, 6(2), 125-128. doi:10.1002/jab.770060207
Patel, P. S., Shepherd, D. E., & Hukins, D. W. (2008). Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone. BMC Musculoskeletal Disorders, 9(1). doi:10.1186/1471-2474-9-137
Gómez, S., Vlad, M. D., López, J., Navarro, M., & Fernández, E. (2013). Characterization and three-dimensional reconstruction of synthetic bone model foams. Materials Science and Engineering: C, 33(6), 3329-3335. doi:10.1016/j.msec.2013.04.013
Zhao, Y., Robson Brown, K. A., Jin, Z. M., & Wilcox, R. K. (2012). Trabecular Level Analysis of Bone Cement Augmentation: A Comparative Experimental and Finite Element Study. Annals of Biomedical Engineering, 40(10), 2168-2176. doi:10.1007/s10439-012-0587-3
Youssef, S., Maire, E., & Gaertner, R. (2005). Finite element modelling of the actual structure of cellular materials determined by X-ray tomography. Acta Materialia, 53(3), 719-730. doi:10.1016/j.actamat.2004.10.024
Thompson, M. S., McCarthy, I. D., Lidgren, L., & Ryd, L. (2003). Compressive and Shear Properties of Commercially Available Polyurethane Foams. Journal of Biomechanical Engineering, 125(5), 732-734. doi:10.1115/1.1614820
Marsavina, L., Constantinescu, D. M., Linul, E., Voiconi, T., & Apostol, D. A. (2015). Shear and mode II fracture of PUR foams. Engineering Failure Analysis, 58, 465-476. doi:10.1016/j.engfailanal.2015.05.021
Marsavina, L., Constantinescu, D. M., Linul, E., Stuparu, F. A., & Apostol, D. A. (2016). Experimental and numerical crack paths in PUR foams. Engineering Fracture Mechanics, 167, 68-83. doi:10.1016/j.engfracmech.2016.03.043
H. Jin, W.Y. Lu, S. Hong, K. Connelly, Fracture Behavior of Polyurethane Foams, Proc. 2007 SEM Annu. Conf. Expo. Springfield, Massachusetts, June 4-6, 2007. doi:https://doi.org/10.1115/IMECE2007-42732.
Chiang, F.-P., & Ding, Y. (2008). Size effect on stress–strain relation of neat polyurethane foam. Composites Part B: Engineering, 39(1), 42-49. doi:10.1016/j.compositesb.2007.02.011
M.A. Sutton, J.J. Orteu, H. Schreier, Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications 2009, Springer Science + Business Media (233 Spring street, New York, NY 10013, USA). ISBN: 9780387787473. doi:https://doi.org/10.1007/978-0-387-78747-3.
Bay, B. K. (1995). Texture correlation: A method for the measurement of detailed strain distributions within trabecular bone. Journal of Orthopaedic Research, 13(2), 258-267. doi:10.1002/jor.1100130214
Belda, R., Palomar, M., Peris-Serra, J. L., Vercher-Martínez, A., & Giner, E. (2020). Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling. International Journal of Mechanical Sciences, 165, 105213. doi:10.1016/j.ijmecsci.2019.105213
B. Koohbor, S. Ravindran, A. Kidane, Effects of cell-wall instability and local failure on the response of closed-cell polymeric foams subjected to dynamic loading, Mech. Mater. 116 (2018), pp. 67–6. doi:https://doi.org/10.1016/j.mechmat.2017.03.017.
Bai, T., Dong, B., Xiao, M., Liu, H., Wang, N., Wang, Y., … Guo, Z. (2018). Polystyrene Foam with High Cell Density and Small Cell Size by Compression-Injection Molding and Core Back Foaming Technique: Evolution of Cells in Cavity. Macromolecular Materials and Engineering, 303(9), 1800110. doi:10.1002/mame.201800110
Pyka, G., Kerckhofs, G., Schrooten, J., & Wevers, M. (2014). The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures. Materials Characterization, 87, 104-115. doi:10.1016/j.matchar.2013.11.004
Ün, K., Bevill, G., & Keaveny, T. M. (2006). The effects of side-artifacts on the elastic modulus of trabecular bone. Journal of Biomechanics, 39(11), 1955-1963. doi:10.1016/j.jbiomech.2006.05.012
Odgaard, A., & Linde, F. (1991). The underestimation of Young’s modulus in compressive testing of cancellous bone specimens. Journal of Biomechanics, 24(8), 691-698. doi:10.1016/0021-9290(91)90333-i
Keaveny, T. M., Borchers, R. E., Gibson, L. J., & Hayes, W. C. (1993). Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. Journal of Biomechanics, 26(4-5), 599-607. doi:10.1016/0021-9290(93)90021-6
Hambli, R. (2013). Micro-CT finite element model and experimental validation of trabecular bone damage and fracture. Bone, 56(2), 363-374. doi:10.1016/j.bone.2013.06.028
Lemaitre, J. (1985). A Continuous Damage Mechanics Model for Ductile Fracture. Journal of Engineering Materials and Technology, 107(1), 83-89. doi:10.1115/1.3225775
Kopperdahl, D. L., & Keaveny, T. M. (1998). Yield strain behavior of trabecular bone. Journal of Biomechanics, 31(7), 601-608. doi:10.1016/s0021-9290(98)00057-8
Niebur, G. L., Feldstein, M. J., Yuen, J. C., Chen, T. J., & Keaveny, T. M. (2000). High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. Journal of Biomechanics, 33(12), 1575-1583. doi:10.1016/s0021-9290(00)00149-4
Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27-35. doi:10.1016/s0021-9290(03)00257-4
Carretta, R., Stüssi, E., Müller, R., & Lorenzetti, S. (2013). Within subject heterogeneity in tissue-level post-yield mechanical and material properties in human trabecular bone. Journal of the Mechanical Behavior of Biomedical Materials, 24, 64-73. doi:10.1016/j.jmbbm.2013.04.014
Ulrich, D., van Rietbergen, B., Laib, A., & R̈uegsegger, P. (1999). The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone, 25(1), 55-60. doi:10.1016/s8756-3282(99)00098-8
Gómez González, S., Valera Jiménez, J. F., Cabestany Bastida, G., Vlad, M. D., López López, J., & Fernández Aguado, E. (2020). Synthetic open cell foams versus a healthy human vertebra: Anisotropy, fluid flow and μ-CT structural studies. Materials Science and Engineering: C, 108, 110404. doi:10.1016/j.msec.2019.110404
[-]