- -

Markovian modeling for dependent interrecurrence times in bladder cancer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Markovian modeling for dependent interrecurrence times in bladder cancer

Mostrar el registro completo del ítem

García Mora, MB.; Santamaria Navarro, C.; Rubio Navarro, G. (2020). Markovian modeling for dependent interrecurrence times in bladder cancer. Mathematical Methods in the Applied Sciences. 43(14):8302-8310. https://doi.org/10.1002/mma.6593

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164421

Ficheros en el ítem

Metadatos del ítem

Título: Markovian modeling for dependent interrecurrence times in bladder cancer
Autor: García Mora, María Belén Santamaria Navarro, Cristina Rubio Navarro, Gregorio
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] A methodology to model a process in which repeated events occur is presented. The context is the evolution of non-muscle-invasive bladder carcinoma (NMIBC), characterized by recurrent relapses. It is based on the ...[+]
Palabras clave: Bladder cancer , Covariates , Dependent interrecurrence times , Erlang distribution , Flowgraph model , Nonstationary Markovian arrival process , Phase-type distribution , Survival
Derechos de uso: Cerrado
Fuente:
Mathematical Methods in the Applied Sciences. (issn: 0170-4214 )
DOI: 10.1002/mma.6593
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/mma.6593
Tipo: Artículo

References

Meszáros, A., Papp, J., & Telek, M. (2014). Fitting traffic traces with discrete canonical phase type distributions and Markov arrival processes. International Journal of Applied Mathematics and Computer Science, 24(3), 453-470. doi:10.2478/amcs-2014-0034

García-Mora, B., Santamaría, C., & Rubio, G. (2018). Modeling dependence in the inter-failure times. An analysis in Reliability models by Markovian Arrival Processes. Journal of Computational and Applied Mathematics, 343, 762-770. doi:10.1016/j.cam.2017.12.022

Montoro-Cazorla, D., & Pérez-Ocón, R. (2011). A shock and wear system with memory of the phase of failure. Mathematical and Computer Modelling, 54(9-10), 2155-2164. doi:10.1016/j.mcm.2011.05.024 [+]
Meszáros, A., Papp, J., & Telek, M. (2014). Fitting traffic traces with discrete canonical phase type distributions and Markov arrival processes. International Journal of Applied Mathematics and Computer Science, 24(3), 453-470. doi:10.2478/amcs-2014-0034

García-Mora, B., Santamaría, C., & Rubio, G. (2018). Modeling dependence in the inter-failure times. An analysis in Reliability models by Markovian Arrival Processes. Journal of Computational and Applied Mathematics, 343, 762-770. doi:10.1016/j.cam.2017.12.022

Montoro-Cazorla, D., & Pérez-Ocón, R. (2011). A shock and wear system with memory of the phase of failure. Mathematical and Computer Modelling, 54(9-10), 2155-2164. doi:10.1016/j.mcm.2011.05.024

Neuts, M. F., & Bhattacharjee, M. C. (1981). Shock models with phase type survival and shock resistance. Naval Research Logistics Quarterly, 28(2), 213-219. doi:10.1002/nav.3800280204

Kiemeney, L. A. L. M., Witjes, J. A., Heijbroek, R. P., Verbeek, A. L. M., & Debruyne, F. M. J. (1993). Predictability of Recurrent and Progressive Disease in Individual Patients with Primary Superficial Bladder Cancer. Journal of Urology, 150(1), 60-64. doi:10.1016/s0022-5347(17)35397-1

Butler, R. W., & Huzurbazar, A. V. (1997). Stochastic Network Models for Survival Analysis. Journal of the American Statistical Association, 92(437), 246-257. doi:10.1080/01621459.1997.10473622

Huzurbazar, A. V. (2000). Modeling and Analysis of Engineering Systems Data Using Flowgraph Models. Technometrics, 42(3), 300-306. doi:10.1080/00401706.2000.10486050

Collins, D. H., & Huzurbazar, A. V. (2008). System reliability and safety assessment using non-parametric flowgraph models. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 222(4), 667-674. doi:10.1243/1748006xjrr165

Collins, D. H., & Huzurbazar, A. V. (2011). Prognostic models based on statistical flowgraphs. Applied Stochastic Models in Business and Industry, 28(2), 141-151. doi:10.1002/asmb.884

Yau, C. L., & Huzurbazar, A. V. (2002). Analysis of censored and incomplete survival data using flowgraph models. Statistics in Medicine, 21(23), 3727-3743. doi:10.1002/sim.1237

Rubio, G., García-Mora, B., Santamaría, C., & Pontones, J. L. (2014). A flowgraph model for bladder carcinoma. Theoretical Biology and Medical Modelling, 11(S1). doi:10.1186/1742-4682-11-s1-s3

RubioG García–MoraB SantamaríaC PontonesJL.Incorporating multiple recurrences in a flowgraph model for bladder carcinoma. In: International Work–Conference on Bioinformatics and Biomedical Engineering IWBBIO.Granada Spain:2015;61.

Mason, S. (1956). Feedback Theory-Further Properties of Signal Flow Graphs. Proceedings of the IRE, 44(7), 920-926. doi:10.1109/jrproc.1956.275147

Abate, J., & Whitt, W. (1992). The Fourier-series method for inverting transforms of probability distributions. Queueing Systems, 10(1-2), 5-87. doi:10.1007/bf01158520

McClureT.Numerical Inverse Laplace Transform(https://www.mathworks.com/matlabcentral/fileexchange/39035-numerical-inverse-laplace-transform) MATLAB Central File Exchange. Retrieved January 7 2019;2020.

Santamaría, C., García-Mora, B., Rubio, G., & Luján, S. (2011). An analysis of the recurrence–progression process in bladder carcinoma by means of joint frailty models. Mathematical and Computer Modelling, 54(7-8), 1671-1675. doi:10.1016/j.mcm.2010.11.004

Huzurbazar, A. V., & Williams, B. J. (2010). Incorporating Covariates in Flowgraph Models: Applications to Recurrent Event Data. Technometrics, 52(2), 198-208. doi:10.1198/tech.2010.08044

García-Mora, B., Santamaría, C., Rubio, G., & Pontones, J. L. (2016). Bayesian prediction for flowgraph models with covariates. An application to bladder carcinoma. Journal of Computational and Applied Mathematics, 291, 85-93. doi:10.1016/j.cam.2015.03.045

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem