Meszáros, A., Papp, J., & Telek, M. (2014). Fitting traffic traces with discrete canonical phase type distributions and Markov arrival processes. International Journal of Applied Mathematics and Computer Science, 24(3), 453-470. doi:10.2478/amcs-2014-0034
García-Mora, B., Santamaría, C., & Rubio, G. (2018). Modeling dependence in the inter-failure times. An analysis in Reliability models by Markovian Arrival Processes. Journal of Computational and Applied Mathematics, 343, 762-770. doi:10.1016/j.cam.2017.12.022
Montoro-Cazorla, D., & Pérez-Ocón, R. (2011). A shock and wear system with memory of the phase of failure. Mathematical and Computer Modelling, 54(9-10), 2155-2164. doi:10.1016/j.mcm.2011.05.024
[+]
Meszáros, A., Papp, J., & Telek, M. (2014). Fitting traffic traces with discrete canonical phase type distributions and Markov arrival processes. International Journal of Applied Mathematics and Computer Science, 24(3), 453-470. doi:10.2478/amcs-2014-0034
García-Mora, B., Santamaría, C., & Rubio, G. (2018). Modeling dependence in the inter-failure times. An analysis in Reliability models by Markovian Arrival Processes. Journal of Computational and Applied Mathematics, 343, 762-770. doi:10.1016/j.cam.2017.12.022
Montoro-Cazorla, D., & Pérez-Ocón, R. (2011). A shock and wear system with memory of the phase of failure. Mathematical and Computer Modelling, 54(9-10), 2155-2164. doi:10.1016/j.mcm.2011.05.024
Neuts, M. F., & Bhattacharjee, M. C. (1981). Shock models with phase type survival and shock resistance. Naval Research Logistics Quarterly, 28(2), 213-219. doi:10.1002/nav.3800280204
Kiemeney, L. A. L. M., Witjes, J. A., Heijbroek, R. P., Verbeek, A. L. M., & Debruyne, F. M. J. (1993). Predictability of Recurrent and Progressive Disease in Individual Patients with Primary Superficial Bladder Cancer. Journal of Urology, 150(1), 60-64. doi:10.1016/s0022-5347(17)35397-1
Butler, R. W., & Huzurbazar, A. V. (1997). Stochastic Network Models for Survival Analysis. Journal of the American Statistical Association, 92(437), 246-257. doi:10.1080/01621459.1997.10473622
Huzurbazar, A. V. (2000). Modeling and Analysis of Engineering Systems Data Using Flowgraph Models. Technometrics, 42(3), 300-306. doi:10.1080/00401706.2000.10486050
Collins, D. H., & Huzurbazar, A. V. (2008). System reliability and safety assessment using non-parametric flowgraph models. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 222(4), 667-674. doi:10.1243/1748006xjrr165
Collins, D. H., & Huzurbazar, A. V. (2011). Prognostic models based on statistical flowgraphs. Applied Stochastic Models in Business and Industry, 28(2), 141-151. doi:10.1002/asmb.884
Yau, C. L., & Huzurbazar, A. V. (2002). Analysis of censored and incomplete survival data using flowgraph models. Statistics in Medicine, 21(23), 3727-3743. doi:10.1002/sim.1237
Rubio, G., García-Mora, B., Santamaría, C., & Pontones, J. L. (2014). A flowgraph model for bladder carcinoma. Theoretical Biology and Medical Modelling, 11(S1). doi:10.1186/1742-4682-11-s1-s3
RubioG García–MoraB SantamaríaC PontonesJL.Incorporating multiple recurrences in a flowgraph model for bladder carcinoma. In: International Work–Conference on Bioinformatics and Biomedical Engineering IWBBIO.Granada Spain:2015;61.
Mason, S. (1956). Feedback Theory-Further Properties of Signal Flow Graphs. Proceedings of the IRE, 44(7), 920-926. doi:10.1109/jrproc.1956.275147
Abate, J., & Whitt, W. (1992). The Fourier-series method for inverting transforms of probability distributions. Queueing Systems, 10(1-2), 5-87. doi:10.1007/bf01158520
McClureT.Numerical Inverse Laplace Transform(https://www.mathworks.com/matlabcentral/fileexchange/39035-numerical-inverse-laplace-transform) MATLAB Central File Exchange. Retrieved January 7 2019;2020.
Santamaría, C., García-Mora, B., Rubio, G., & Luján, S. (2011). An analysis of the recurrence–progression process in bladder carcinoma by means of joint frailty models. Mathematical and Computer Modelling, 54(7-8), 1671-1675. doi:10.1016/j.mcm.2010.11.004
Huzurbazar, A. V., & Williams, B. J. (2010). Incorporating Covariates in Flowgraph Models: Applications to Recurrent Event Data. Technometrics, 52(2), 198-208. doi:10.1198/tech.2010.08044
García-Mora, B., Santamaría, C., Rubio, G., & Pontones, J. L. (2016). Bayesian prediction for flowgraph models with covariates. An application to bladder carcinoma. Journal of Computational and Applied Mathematics, 291, 85-93. doi:10.1016/j.cam.2015.03.045
[-]