- -

Markovian modeling for dependent interrecurrence times in bladder cancer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Markovian modeling for dependent interrecurrence times in bladder cancer

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Mora, María Belén es_ES
dc.contributor.author Santamaria Navarro, Cristina es_ES
dc.contributor.author Rubio Navarro, Gregorio es_ES
dc.date.accessioned 2021-03-26T04:31:09Z
dc.date.available 2021-03-26T04:31:09Z
dc.date.issued 2020-09-30 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164421
dc.description.abstract [EN] A methodology to model a process in which repeated events occur is presented. The context is the evolution of non-muscle-invasive bladder carcinoma (NMIBC), characterized by recurrent relapses. It is based on the statistical flowgraph approach, a technique specifically suited for semi-Markov processes. A very useful feature of the flowgraph framework is that it naturally incorporates the management of censored data. However, this approach presents two difficulties with the process to be modeled. On one hand, the management of covariates is not straightforward. However, it is of great interest to know how the characteristics of a certain patient influence the evolution of the disease. On the other hand, repeated events on the same subject are generally not independent, in which case the semi-Markov framework is not sufficient because the semi-Markov assumption implies independence among waiting time distributions. We solve this issue by extending the flowgraph methodology using the Markovian arrival process (MAP), which does successfully model the dependence between events. Along the way, we provide a procedure to consider covariates and censored times in MAPs, a pending task needed in this field. In short, we have managed to extend the flowgraph methodology beyond the semi-Markovian framework, simplifying the incorporation of covariates and keeping the management of censored times. All of which has allowed us to build a multistate model of the evolution of NMIBC. The developed model allows us to compute the Survival function for any evolution of a patient with specific clinic-pathological characteristics in this primary tumor. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bladder cancer es_ES
dc.subject Covariates es_ES
dc.subject Dependent interrecurrence times es_ES
dc.subject Erlang distribution es_ES
dc.subject Flowgraph model es_ES
dc.subject Nonstationary Markovian arrival process es_ES
dc.subject Phase-type distribution es_ES
dc.subject Survival es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Markovian modeling for dependent interrecurrence times in bladder cancer es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.6593 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation García Mora, MB.; Santamaria Navarro, C.; Rubio Navarro, G. (2020). Markovian modeling for dependent interrecurrence times in bladder cancer. Mathematical Methods in the Applied Sciences. 43(14):8302-8310. https://doi.org/10.1002/mma.6593 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.6593 es_ES
dc.description.upvformatpinicio 8302 es_ES
dc.description.upvformatpfin 8310 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\423431 es_ES
dc.description.references Meszáros, A., Papp, J., & Telek, M. (2014). Fitting traffic traces with discrete canonical phase type distributions and Markov arrival processes. International Journal of Applied Mathematics and Computer Science, 24(3), 453-470. doi:10.2478/amcs-2014-0034 es_ES
dc.description.references García-Mora, B., Santamaría, C., & Rubio, G. (2018). Modeling dependence in the inter-failure times. An analysis in Reliability models by Markovian Arrival Processes. Journal of Computational and Applied Mathematics, 343, 762-770. doi:10.1016/j.cam.2017.12.022 es_ES
dc.description.references Montoro-Cazorla, D., & Pérez-Ocón, R. (2011). A shock and wear system with memory of the phase of failure. Mathematical and Computer Modelling, 54(9-10), 2155-2164. doi:10.1016/j.mcm.2011.05.024 es_ES
dc.description.references Neuts, M. F., & Bhattacharjee, M. C. (1981). Shock models with phase type survival and shock resistance. Naval Research Logistics Quarterly, 28(2), 213-219. doi:10.1002/nav.3800280204 es_ES
dc.description.references Kiemeney, L. A. L. M., Witjes, J. A., Heijbroek, R. P., Verbeek, A. L. M., & Debruyne, F. M. J. (1993). Predictability of Recurrent and Progressive Disease in Individual Patients with Primary Superficial Bladder Cancer. Journal of Urology, 150(1), 60-64. doi:10.1016/s0022-5347(17)35397-1 es_ES
dc.description.references Butler, R. W., & Huzurbazar, A. V. (1997). Stochastic Network Models for Survival Analysis. Journal of the American Statistical Association, 92(437), 246-257. doi:10.1080/01621459.1997.10473622 es_ES
dc.description.references Huzurbazar, A. V. (2000). Modeling and Analysis of Engineering Systems Data Using Flowgraph Models. Technometrics, 42(3), 300-306. doi:10.1080/00401706.2000.10486050 es_ES
dc.description.references Collins, D. H., & Huzurbazar, A. V. (2008). System reliability and safety assessment using non-parametric flowgraph models. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 222(4), 667-674. doi:10.1243/1748006xjrr165 es_ES
dc.description.references Collins, D. H., & Huzurbazar, A. V. (2011). Prognostic models based on statistical flowgraphs. Applied Stochastic Models in Business and Industry, 28(2), 141-151. doi:10.1002/asmb.884 es_ES
dc.description.references Yau, C. L., & Huzurbazar, A. V. (2002). Analysis of censored and incomplete survival data using flowgraph models. Statistics in Medicine, 21(23), 3727-3743. doi:10.1002/sim.1237 es_ES
dc.description.references Rubio, G., García-Mora, B., Santamaría, C., & Pontones, J. L. (2014). A flowgraph model for bladder carcinoma. Theoretical Biology and Medical Modelling, 11(S1). doi:10.1186/1742-4682-11-s1-s3 es_ES
dc.description.references RubioG García–MoraB SantamaríaC PontonesJL.Incorporating multiple recurrences in a flowgraph model for bladder carcinoma. In: International Work–Conference on Bioinformatics and Biomedical Engineering IWBBIO.Granada Spain:2015;61. es_ES
dc.description.references Mason, S. (1956). Feedback Theory-Further Properties of Signal Flow Graphs. Proceedings of the IRE, 44(7), 920-926. doi:10.1109/jrproc.1956.275147 es_ES
dc.description.references Abate, J., & Whitt, W. (1992). The Fourier-series method for inverting transforms of probability distributions. Queueing Systems, 10(1-2), 5-87. doi:10.1007/bf01158520 es_ES
dc.description.references McClureT.Numerical Inverse Laplace Transform(https://www.mathworks.com/matlabcentral/fileexchange/39035-numerical-inverse-laplace-transform) MATLAB Central File Exchange. Retrieved January 7 2019;2020. es_ES
dc.description.references Santamaría, C., García-Mora, B., Rubio, G., & Luján, S. (2011). An analysis of the recurrence–progression process in bladder carcinoma by means of joint frailty models. Mathematical and Computer Modelling, 54(7-8), 1671-1675. doi:10.1016/j.mcm.2010.11.004 es_ES
dc.description.references Huzurbazar, A. V., & Williams, B. J. (2010). Incorporating Covariates in Flowgraph Models: Applications to Recurrent Event Data. Technometrics, 52(2), 198-208. doi:10.1198/tech.2010.08044 es_ES
dc.description.references García-Mora, B., Santamaría, C., Rubio, G., & Pontones, J. L. (2016). Bayesian prediction for flowgraph models with covariates. An application to bladder carcinoma. Journal of Computational and Applied Mathematics, 291, 85-93. doi:10.1016/j.cam.2015.03.045 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem