- -

MCM-22, MCM-36, and ITQ-2 Zeolites with Different Si/Al Molar Ratios as Effective Catalysts of Methanol and Ethanol Dehydration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

MCM-22, MCM-36, and ITQ-2 Zeolites with Different Si/Al Molar Ratios as Effective Catalysts of Methanol and Ethanol Dehydration

Mostrar el registro completo del ítem

Marosz, M.; Samojeden, B.; Kowalczyk, A.; Rutkowska, M.; Motak, M.; Díaz Morales, UM.; Palomares Gimeno, AE.... (2020). MCM-22, MCM-36, and ITQ-2 Zeolites with Different Si/Al Molar Ratios as Effective Catalysts of Methanol and Ethanol Dehydration. Materials. 13(10):1-17. https://doi.org/10.3390/ma13102399

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164478

Ficheros en el ítem

Metadatos del ítem

Título: MCM-22, MCM-36, and ITQ-2 Zeolites with Different Si/Al Molar Ratios as Effective Catalysts of Methanol and Ethanol Dehydration
Autor: Marosz, Monika Samojeden, Bogdan Kowalczyk, Andrzej Rutkowska, Malgorzata Motak, Monika DÍAZ MORALES, URBANO MANUEL Palomares Gimeno, Antonio Eduardo Chmielarz, Lucjan
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] MCM-22, MCM-36, and ITQ-2 zeolites with the intended Si/Al molar ratios of 15, 25, and 50 were synthetized and tested as catalysts for dehydration of methanol to dimethyl ether and dehydration of ethanol to diethyl ...[+]
Palabras clave: MCM-22 , MCM-36 , ITQ-2 , Methanol , Ethanol , Dehydration
Derechos de uso: Reconocimiento (by)
Fuente:
Materials. (eissn: 1996-1944 )
DOI: 10.3390/ma13102399
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ma13102399
Código del Proyecto:
info:eu-repo/grantAgreement/FNP//POIG.02.01.00-12-023%2F08/PL/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/
info:eu-repo/grantAgreement/NCN//2016%2F21%2FB%2FST5%2F00242/
Agradecimientos:
This research was funded by National Science Centre-Poland grant number 2016/21/B/ST5/00242. U.D. acknowledges to the Spanish Government grant number MAT2017-82288-C2-1-P. The research was partially done using the equipment ...[+]
Tipo: Artículo

References

Clausen, L. R., Houbak, N., & Elmegaard, B. (2010). Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water. Energy, 35(5), 2338-2347. doi:10.1016/j.energy.2010.02.034

Huisman, G. H., Van Rens, G. L. M. A., De Lathouder, H., & Cornelissen, R. L. (2011). Cost estimation of biomass-to-fuel plants producing methanol, dimethylether or hydrogen. Biomass and Bioenergy, 35, S155-S166. doi:10.1016/j.biombioe.2011.04.038

Sarkar, S., Kumar, A., & Sultana, A. (2011). Biofuels and biochemicals production from forest biomass in Western Canada. Energy, 36(10), 6251-6262. doi:10.1016/j.energy.2011.07.024 [+]
Clausen, L. R., Houbak, N., & Elmegaard, B. (2010). Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water. Energy, 35(5), 2338-2347. doi:10.1016/j.energy.2010.02.034

Huisman, G. H., Van Rens, G. L. M. A., De Lathouder, H., & Cornelissen, R. L. (2011). Cost estimation of biomass-to-fuel plants producing methanol, dimethylether or hydrogen. Biomass and Bioenergy, 35, S155-S166. doi:10.1016/j.biombioe.2011.04.038

Sarkar, S., Kumar, A., & Sultana, A. (2011). Biofuels and biochemicals production from forest biomass in Western Canada. Energy, 36(10), 6251-6262. doi:10.1016/j.energy.2011.07.024

Gavahian, M., Munekata, P. E. S., Eş, I., Lorenzo, J. M., Mousavi Khaneghah, A., & Barba, F. J. (2019). Emerging techniques in bioethanol production: from distillation to waste valorization. Green Chemistry, 21(6), 1171-1185. doi:10.1039/c8gc02698j

Barbarossa, V., Viscardi, R., Maestri, G., Maggi, R., Mirabile Gattia, D., & Paris, E. (2019). Sulfonated catalysts for methanol dehydration to dimethyl ether (DME). Materials Research Bulletin, 113, 64-69. doi:10.1016/j.materresbull.2019.01.018

Marchionna, M., Patrini, R., Sanfilippo, D., & Migliavacca, G. (2008). Fundamental investigations on di-methyl ether (DME) as LPG substitute or make-up for domestic uses. Fuel Processing Technology, 89(12), 1255-1261. doi:10.1016/j.fuproc.2008.07.013

Rownaghi, A. A., Rezaei, F., Stante, M., & Hedlund, J. (2012). Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals. Applied Catalysis B: Environmental, 119-120, 56-61. doi:10.1016/j.apcatb.2012.02.017

Stiefel, M., Ahmad, R., Arnold, U., & Döring, M. (2011). Direct synthesis of dimethyl ether from carbon-monoxide-rich synthesis gas: Influence of dehydration catalysts and operating conditions. Fuel Processing Technology, 92(8), 1466-1474. doi:10.1016/j.fuproc.2011.03.007

Tokay, K. C., Dogu, T., & Dogu, G. (2012). Dimethyl ether synthesis over alumina based catalysts. Chemical Engineering Journal, 184, 278-285. doi:10.1016/j.cej.2011.12.034

Semelsberger, T. A., Borup, R. L., & Greene, H. L. (2006). Dimethyl ether (DME) as an alternative fuel. Journal of Power Sources, 156(2), 497-511. doi:10.1016/j.jpowsour.2005.05.082

Arcoumanis, C., Bae, C., Crookes, R., & Kinoshita, E. (2008). The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review. Fuel, 87(7), 1014-1030. doi:10.1016/j.fuel.2007.06.007

Takahara, I., Saito, M., Inaba, M., & Murata, K. (2005). Dehydration of Ethanol into Ethylene over Solid Acid Catalysts. Catalysis Letters, 105(3-4), 249-252. doi:10.1007/s10562-005-8698-1

Kito-Borsa, T., Pacas, D. A., Selim, S., & Cowley, S. W. (1998). Properties of an Ethanol−Diethyl Ether−Water Fuel Mixture for Cold-Start Assistance of an Ethanol-Fueled Vehicle. Industrial & Engineering Chemistry Research, 37(8), 3366-3374. doi:10.1021/ie970171l

Ciftci, A., Varisli, D., Cem Tokay, K., Aslı Sezgi, N., & Dogu, T. (2012). Dimethyl ether, diethyl ether & ethylene from alcohols over tungstophosphoric acid based mesoporous catalysts. Chemical Engineering Journal, 207-208, 85-93. doi:10.1016/j.cej.2012.04.016

Xu, M., Lunsford, J. H., Goodman, D. W., & Bhattacharyya, A. (1997). Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts. Applied Catalysis A: General, 149(2), 289-301. doi:10.1016/s0926-860x(96)00275-x

Yaripour, F., Baghaei, F., Schmidt, I., & Perregaard, J. (2005). Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts. Catalysis Communications, 6(2), 147-152. doi:10.1016/j.catcom.2004.11.012

Abu-Dahrieh, J., Rooney, D., Goguet, A., & Saih, Y. (2012). Activity and deactivation studies for direct dimethyl ether synthesis using CuO–ZnO–Al2O3 with NH4ZSM-5, HZSM-5 or γ-Al2O3. Chemical Engineering Journal, 203, 201-211. doi:10.1016/j.cej.2012.07.011

De Oliveira, T. K. R., Rosset, M., & Perez-Lopez, O. W. (2018). Ethanol dehydration to diethyl ether over Cu-Fe/ZSM-5 catalysts. Catalysis Communications, 104, 32-36. doi:10.1016/j.catcom.2017.10.013

Chmielarz, L., Kowalczyk, A., Skoczek, M., Rutkowska, M., Gil, B., Natkański, P., … Ryczkowski, J. (2018). Porous clay heterostructures intercalated with multicomponent pillars as catalysts for dehydration of alcohols. Applied Clay Science, 160, 116-125. doi:10.1016/j.clay.2017.12.015

Marosz, M., Kowalczyk, A., & Chmielarz, L. (2020). Modified vermiculites as effective catalysts for dehydration of methanol and ethanol. Catalysis Today, 355, 466-475. doi:10.1016/j.cattod.2019.07.003

Marosz, M., Kowalczyk, A., Gil, B., & Chmielarz, L. (2020). Acid-treated Clay Minerals as Catalysts for Dehydration of Methanol and Ethanol. Clays and Clay Minerals, 68(1), 23-37. doi:10.1007/s42860-019-00051-y

Corma, A., Corell, C., & Pérez-Pariente, J. (1995). Synthesis and characterization of the MCM-22 zeolite. Zeolites, 15(1), 2-8. doi:10.1016/0144-2449(94)00013-i

Díaz, U., Fornés, V., & Corma, A. (2006). On the mechanism of zeolite growing: Crystallization by seeding with delayered zeolites. Microporous and Mesoporous Materials, 90(1-3), 73-80. doi:10.1016/j.micromeso.2005.09.025

Rutkowska, M., Díaz, U., Palomares, A. E., & Chmielarz, L. (2015). Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNO x process. Applied Catalysis B: Environmental, 168-169, 531-539. doi:10.1016/j.apcatb.2015.01.016

Jun, J. W., Ahmed, I., Kim, C.-U., Jeong, K.-E., Jeong, S.-Y., & Jhung, S. H. (2014). Synthesis of ZSM-5 zeolites using hexamethylene imine as a template: Effect of microwave aging. Catalysis Today, 232, 108-113. doi:10.1016/j.cattod.2013.08.017

Mansouri, N., Rikhtegar, N., Panahi, H. A., Atabi, F., & Shahraki, B. K. (2013). Porosity, characteriza-tion and structural properties of natural zeolite – clinoptilolite – as a sorbent. Environment Protection Engineering, 39(1). doi:10.37190/epe130111

Juybar, M., Khanmohammadi Khorrami, M., Bagheri Garmarudi, A., & Zandbaaf, S. (2020). Determination of acidity in metal incorporated zeolites by infrared spectrometry using artificial neural network as chemometric approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228, 117539. doi:10.1016/j.saa.2019.117539

Carriço, C. S., Cruz, F. T., Santos, M. B., Pastore, H. O., Andrade, H. M. C., & Mascarenhas, A. J. S. (2013). Efficiency of zeolite MCM-22 with different SiO2/Al2O3 molar ratios in gas phase glycerol dehydration to acrolein. Microporous and Mesoporous Materials, 181, 74-82. doi:10.1016/j.micromeso.2013.07.020

Chmielarz, L., Kuśtrowski, P., Dziembaj, R., Cool, P., & Vansant, E. F. (2010). SBA-15 mesoporous silica modified with metal oxides by MDD method in the role of DeNOx catalysts. Microporous and Mesoporous Materials, 127(1-2), 133-141. doi:10.1016/j.micromeso.2009.07.003

Baran, R., Millot, Y., Onfroy, T., Krafft, J.-M., & Dzwigaj, S. (2012). Influence of the nitric acid treatment on Al removal, framework composition and acidity of BEA zeolite investigated by XRD, FTIR and NMR. Microporous and Mesoporous Materials, 163, 122-130. doi:10.1016/j.micromeso.2012.06.055

Frontera, P., Testa, F., Aiello, R., Candamano, S., & Nagy, J. B. (2007). Transformation of MCM-22(P) into ITQ-2: The role of framework aluminium. Microporous and Mesoporous Materials, 106(1-3), 107-114. doi:10.1016/j.micromeso.2007.02.031

Yang, S.-T., Kim, J.-Y., Kim, J., & Ahn, W.-S. (2012). CO2 capture over amine-functionalized MCM-22, MCM-36 and ITQ-2. Fuel, 97, 435-442. doi:10.1016/j.fuel.2012.03.034

Diep, B. T., & Wainwright, M. S. (1987). Thermodynamic equilibrium constants for the methanol-dimethyl ether-water system. Journal of Chemical & Engineering Data, 32(3), 330-333. doi:10.1021/je00049a015

Barthos, R., Széchenyi, A., & Solymosi, F. (2006). Decomposition and Aromatization of Ethanol on ZSM-Based Catalysts. The Journal of Physical Chemistry B, 110(43), 21816-21825. doi:10.1021/jp063522v

Kondo, J. N., Ito, K., Yoda, E., Wakabayashi, F., & Domen, K. (2005). An Ethoxy Intermediate in Ethanol Dehydration on Brønsted Acid Sites in Zeolite. The Journal of Physical Chemistry B, 109(21), 10969-10972. doi:10.1021/jp050721q

Macina, D., Piwowarska, Z., Tarach, K., Góra-Marek, K., Ryczkowski, J., & Chmielarz, L. (2016). Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol. Materials Research Bulletin, 74, 425-435. doi:10.1016/j.materresbull.2015.11.018

Rutkowska, M., Macina, D., Mirocha-Kubień, N., Piwowarska, Z., & Chmielarz, L. (2015). Hierarchically structured ZSM-5 obtained by desilication as new catalyst for DME synthesis from methanol. Applied Catalysis B: Environmental, 174-175, 336-343. doi:10.1016/j.apcatb.2015.03.006

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem