- -

A comparison between some fracture modelling approaches in 2D LEFM using finite elements

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A comparison between some fracture modelling approaches in 2D LEFM using finite elements

Show full item record

Marco, M.; Infante-García, D.; Belda, R.; Giner Maravilla, E. (2020). A comparison between some fracture modelling approaches in 2D LEFM using finite elements. International Journal of Fracture. 223(1-2):151-171. https://doi.org/10.1007/s10704-020-00426-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164479

Files in this item

Item Metadata

Title: A comparison between some fracture modelling approaches in 2D LEFM using finite elements
Author: Marco, Miguel Infante-García, Diego Belda, R. Giner Maravilla, Eugenio
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] The finite element method has been widely used to solve different problems in the field of fracture mechanics. In the last two decades, new methods have been developed to improve the accuracy of the solution in 2D ...[+]
Subjects: Fracture mechanics , Numerical modelling , Finite element modelling , XFEM , Phantom node method
Copyrigths: Reserva de todos los derechos
Source:
International Journal of Fracture. (issn: 0376-9429 )
DOI: 10.1007/s10704-020-00426-6
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s10704-020-00426-6
Project ID:
info:eu-repo/grantAgreement/MINECO//BES-2015-072070/ES/BES-2015-072070/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-1-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/
info:eu-repo/grantAgreement/MINECO//BES-2014-068473/ES/BES-2014-068473/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-2-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/
Thanks:
The authors gratefully acknowledge the funding support received from the Spanish Ministerio de Ciencia, Innovacion y Universidades and the FEDER operation program in the framework of the projects DPI2017-89197-C2-1-R and ...[+]
Type: Artículo

References

Agwai A, Guven I, Madenci E (2010) Comparison of XFEM, CZM and PD for predicting crack initiation and propagation. In: Collection of technical papers—AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference

Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng 63(8):760–788

Argyris JH, Kelsey S (1954) Energy theorems and structural analysis. Aircraft Eng 26(12):410–422 [+]
Agwai A, Guven I, Madenci E (2010) Comparison of XFEM, CZM and PD for predicting crack initiation and propagation. In: Collection of technical papers—AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference

Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng 63(8):760–788

Argyris JH, Kelsey S (1954) Energy theorems and structural analysis. Aircraft Eng 26(12):410–422

Banks-Sills L (1991) Application of the finite element method to linear elastic fracture mechanics. Appl Mech Rev 44(10):447–461

Banks-Sills L, Sherman D (1986) Comparison of methods for calculating stress intensity factors with quarter point elements. Int J Fract 32:127–140

Banks-Sills L, Sherman D (1992) On the computation of stress intensity factors for three-dimensional geometries by means of the stiffness derivative and J-integral methods. Int J Fract 53:1–20

Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

Bittencourt TN, Barry A, Ingraffea AR (1992) Comparison of mixed-mode stress intensity factors obtained through displacement correlation, J-integral formulation and modified crack-closure integral. In: Fracture mechanics: 22nd Symposium. Atluri SN, Newman,JC Jr, Raju IS, Epstein JS, editors, number II, ASTM STP, Philadelphia, pp 69-82

Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL (1996) Quasi-automatic simulation of crack propagation for 2D LEFM problems. Eng Fract Mech 55(2):321–334

Bobet A, Einstein HH (1998) Numerical modeling of fracture coalescence in a model rock material. Int J Fract 92:221–252

Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826

Clough RW (1960) The finite element method in plane stress analysis, Conference on matrix methods in structural mechanics, ASCE, Pittsburgh, PA: 345-378

Clough RW (1962) The stress distribution of Norfork Dam, structures and materials research. Department of civil engineering, University of California: Series 100, Issue 19, Berkeley

Duflot M (2007) A study of the representation of cracks with level sets. Int J Numer Methods Eng 70(11):1261–1302

Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

Gallagher RH (1978) A review of finite element techniques in fracture mechanics. In: Proceedings of the first international conference on numerical methods in fracture mechanics (Luxmoore AR, Owen DRJ, Hrsg S) Swansea: Pineridge Press, pp 1–25

Gdoutos EE (1993) Fracture mechanics: an introduction. Solid mechanics and its applications. Kluwer Academic Publishers, Dordrecht, Holland

Giner E, Fuenmayor FJ, Baeza L, Tarancón JE (2005) Error estimation for the finite element evaluation of G$$_{{\rm I}}$$ and G$$_{{\rm II}}$$ in mixed-mode linear elastic fracture mechanics. Finite Elem Anal Des 41:1079–1104

Giner E, Sukumar N, Tarancón JE, Fuenmayor FJ (2009) An Abaqus implementation of the extended finite element method. Eng Fract Mech 76(3):347–368

Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 19(33):3523–3540

Henshell RD, Shaw KG (1975) Crack tip elements are unnecessary. Int J Numer Methods Eng 9:495–507

Hibbitt, Karlsson, Sorensen (2004) Inc. ABAQUS/standard user’s manual, Pawtucket, Rhode Island

Ingraffea AR (2004) Computational fracture mechanics. In: Encyclopedia of computational mechanics, 1$$^{{\rm st}}$$ edn. Wiley, pp 375-405

Jäger P, Steinmann P, Kuhl E (2008) Modelling three-dimensional crack propagation—a comparison of crack path tracking strategies. Int J Numer Methods Eng 76(9):1328–1352

Jirásek M (2011) Damage and smeared crack models. In: Hofstetter G, Meschke G (eds) Numerical modelling of concrete cracking. Springer, Berlin, pp 1–49

Kanninen MF, Popelar CH (1985) Advanced fracture mechanics. Oxford University Press, Oxford (UK)

Kuna M (2013) Finite elements in fracture mechanics. Theory—numerics—applications. Springer, Berlin

Marco M, Belda R, Miguélez MH, Giner E (2018a) A heterogeneous orientation criterion for crack modelling in cortical bone using a phantom-node approach. Finite Elem Anal Des 146:107–117

Marco M, Giner E, Larraínzar-Garijo R, Caeiro JR, Miguélez MH (2018b) Modelling of femur fracture using finite element procedures. Eng Fract Mech 196:157–167

Moës N, Gravouil A (2002) Non-planar 3D crack growth by the extended finite element method and level sets—part I: mechanical model. Int J Numer Methods Eng 53(11):2549–2568

Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

Oliver J, Huespe AE, Samaniego E, Chaves EWV (2002) On strategies for tracking strong discontinuities in computational failure mechanics. In: Fifth world congress on computational mechanics. Mang HA, Rammerstorfer FC, Eberhardsteiner J. Vienna, Austria, pp 7-12

Ooi ET, Man H, Natarajan S, Song C (2015) Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modelling. Eng Fract Mech 144:101–117

Owen DRJ, Fawkes AJ (1983) Engineering fracture mechanics: numerical methods and applications. Pineridge Press Ltd., Swansea

Qian G, Wang M (1996) Symmetric branching of mode II and mixed-mode fatigue crack growth in a stainless steel. J Eng Mater Technol 118:356–361

Qian G, González-Albuixech VF, Niffenegger M, Giner E (2016) Comparison of KI calculation methods. Eng Fract Mech 156:52–67

Rashid YR (1968) Analysis of prestressed concrete reactor vessels. Nucl Eng Des 7:334–334

Rice JR, Tracey DM (1973) Computational fracture mechanics. In: Numerical and computer methods in structural mechanics. Fenves SJ, Perrone N, Robinson AR, Schnobrich WC, Academic Press, New York, pp 585-623

Saouma VE, Ingraffea AR (1981) Fracture mechanics analysis of discrete cracking. In: Proceedings, IABSE colloquium on advanced mechanics of reinforced concrete, Delft 393

Song JH, Wang H, Belytschko T (2008) A comparative study on finite element methods for dynamic fracture. Comput Mech 42:239–250

Staroselsky A, Acharya R, Cassenti B (2019) Phase field modeling of fracture and crack growth. Eng Fract Mech 205:268–284

Stolarska D, Chopp L, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51(8):943–960

Turner MJ, Clough RW, Martin HC, Topp LJ (1956) Stiffness and deflection analysis of complex structures. J Aeronaut Sci 23:805–823

Xu X, Needleman A (1994) Numerical simulation of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record