- -

A comparison between some fracture modelling approaches in 2D LEFM using finite elements

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A comparison between some fracture modelling approaches in 2D LEFM using finite elements

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marco, Miguel es_ES
dc.contributor.author Infante-García, Diego es_ES
dc.contributor.author Belda, R. es_ES
dc.contributor.author Giner Maravilla, Eugenio es_ES
dc.date.accessioned 2021-03-27T04:31:18Z
dc.date.available 2021-03-27T04:31:18Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 0376-9429 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164479
dc.description.abstract [EN] The finite element method has been widely used to solve different problems in the field of fracture mechanics. In the last two decades, new methods have been developed to improve the accuracy of the solution in 2D linear elastic fracture mechanics problems, such as the extended finite element method (XFEM) or the phantom node method (PNM). The goal of this work is to quantify the differences between some numerical approaches: standard finite element method (FEM), mechanical property degradation, interelemental crack method with multi-point constraints, XFEM and PNM. We explain the different techniques analysed together with their advantages and disadvantages. We compare these numerical techniques to model fracture using problems of reference with known solutions, evaluating their behaviour in terms of convergence with respect to the element size and accuracy of the stress intensity factor (SIF), stresses ahead the crack tip and crack propagation prediction. Some of the new techniques have shown a better accuracy in SIF calculation or stress fields ahead the crack tip and other lead to high errors in local results estimations. However, all methods reviewed here can predict crack propagation for the problems of reference of this work, showing good accuracy in crack orientation prediction. es_ES
dc.description.sponsorship The authors gratefully acknowledge the funding support received from the Spanish Ministerio de Ciencia, Innovacion y Universidades and the FEDER operation program in the framework of the projects DPI2017-89197-C2-1-R and DPI2017-89197-C2-2-R and the FPI subprograms BES-2014-068473 and BES-2015-072070. The financial support of the Generalitat Valenciana through the Programme PROMETEO 2016/007 is also acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof International Journal of Fracture es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fracture mechanics es_ES
dc.subject Numerical modelling es_ES
dc.subject Finite element modelling es_ES
dc.subject XFEM es_ES
dc.subject Phantom node method es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title A comparison between some fracture modelling approaches in 2D LEFM using finite elements es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10704-020-00426-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-072070/ES/BES-2015-072070/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-1-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2014-068473/ES/BES-2014-068473/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-2-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Marco, M.; Infante-García, D.; Belda, R.; Giner Maravilla, E. (2020). A comparison between some fracture modelling approaches in 2D LEFM using finite elements. International Journal of Fracture. 223(1-2):151-171. https://doi.org/10.1007/s10704-020-00426-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10704-020-00426-6 es_ES
dc.description.upvformatpinicio 151 es_ES
dc.description.upvformatpfin 171 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 223 es_ES
dc.description.issue 1-2 es_ES
dc.relation.pasarela S\411271 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Agwai A, Guven I, Madenci E (2010) Comparison of XFEM, CZM and PD for predicting crack initiation and propagation. In: Collection of technical papers—AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference es_ES
dc.description.references Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng 63(8):760–788 es_ES
dc.description.references Argyris JH, Kelsey S (1954) Energy theorems and structural analysis. Aircraft Eng 26(12):410–422 es_ES
dc.description.references Banks-Sills L (1991) Application of the finite element method to linear elastic fracture mechanics. Appl Mech Rev 44(10):447–461 es_ES
dc.description.references Banks-Sills L, Sherman D (1986) Comparison of methods for calculating stress intensity factors with quarter point elements. Int J Fract 32:127–140 es_ES
dc.description.references Banks-Sills L, Sherman D (1992) On the computation of stress intensity factors for three-dimensional geometries by means of the stiffness derivative and J-integral methods. Int J Fract 53:1–20 es_ES
dc.description.references Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620 es_ES
dc.description.references Bittencourt TN, Barry A, Ingraffea AR (1992) Comparison of mixed-mode stress intensity factors obtained through displacement correlation, J-integral formulation and modified crack-closure integral. In: Fracture mechanics: 22nd Symposium. Atluri SN, Newman,JC Jr, Raju IS, Epstein JS, editors, number II, ASTM STP, Philadelphia, pp 69-82 es_ES
dc.description.references Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL (1996) Quasi-automatic simulation of crack propagation for 2D LEFM problems. Eng Fract Mech 55(2):321–334 es_ES
dc.description.references Bobet A, Einstein HH (1998) Numerical modeling of fracture coalescence in a model rock material. Int J Fract 92:221–252 es_ES
dc.description.references Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826 es_ES
dc.description.references Clough RW (1960) The finite element method in plane stress analysis, Conference on matrix methods in structural mechanics, ASCE, Pittsburgh, PA: 345-378 es_ES
dc.description.references Clough RW (1962) The stress distribution of Norfork Dam, structures and materials research. Department of civil engineering, University of California: Series 100, Issue 19, Berkeley es_ES
dc.description.references Duflot M (2007) A study of the representation of cracks with level sets. Int J Numer Methods Eng 70(11):1261–1302 es_ES
dc.description.references Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342 es_ES
dc.description.references Gallagher RH (1978) A review of finite element techniques in fracture mechanics. In: Proceedings of the first international conference on numerical methods in fracture mechanics (Luxmoore AR, Owen DRJ, Hrsg S) Swansea: Pineridge Press, pp 1–25 es_ES
dc.description.references Gdoutos EE (1993) Fracture mechanics: an introduction. Solid mechanics and its applications. Kluwer Academic Publishers, Dordrecht, Holland es_ES
dc.description.references Giner E, Fuenmayor FJ, Baeza L, Tarancón JE (2005) Error estimation for the finite element evaluation of G$$_{{\rm I}}$$ and G$$_{{\rm II}}$$ in mixed-mode linear elastic fracture mechanics. Finite Elem Anal Des 41:1079–1104 es_ES
dc.description.references Giner E, Sukumar N, Tarancón JE, Fuenmayor FJ (2009) An Abaqus implementation of the extended finite element method. Eng Fract Mech 76(3):347–368 es_ES
dc.description.references Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 19(33):3523–3540 es_ES
dc.description.references Henshell RD, Shaw KG (1975) Crack tip elements are unnecessary. Int J Numer Methods Eng 9:495–507 es_ES
dc.description.references Hibbitt, Karlsson, Sorensen (2004) Inc. ABAQUS/standard user’s manual, Pawtucket, Rhode Island es_ES
dc.description.references Ingraffea AR (2004) Computational fracture mechanics. In: Encyclopedia of computational mechanics, 1$$^{{\rm st}}$$ edn. Wiley, pp 375-405 es_ES
dc.description.references Jäger P, Steinmann P, Kuhl E (2008) Modelling three-dimensional crack propagation—a comparison of crack path tracking strategies. Int J Numer Methods Eng 76(9):1328–1352 es_ES
dc.description.references Jirásek M (2011) Damage and smeared crack models. In: Hofstetter G, Meschke G (eds) Numerical modelling of concrete cracking. Springer, Berlin, pp 1–49 es_ES
dc.description.references Kanninen MF, Popelar CH (1985) Advanced fracture mechanics. Oxford University Press, Oxford (UK) es_ES
dc.description.references Kuna M (2013) Finite elements in fracture mechanics. Theory—numerics—applications. Springer, Berlin es_ES
dc.description.references Marco M, Belda R, Miguélez MH, Giner E (2018a) A heterogeneous orientation criterion for crack modelling in cortical bone using a phantom-node approach. Finite Elem Anal Des 146:107–117 es_ES
dc.description.references Marco M, Giner E, Larraínzar-Garijo R, Caeiro JR, Miguélez MH (2018b) Modelling of femur fracture using finite element procedures. Eng Fract Mech 196:157–167 es_ES
dc.description.references Moës N, Gravouil A (2002) Non-planar 3D crack growth by the extended finite element method and level sets—part I: mechanical model. Int J Numer Methods Eng 53(11):2549–2568 es_ES
dc.description.references Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150 es_ES
dc.description.references Oliver J, Huespe AE, Samaniego E, Chaves EWV (2002) On strategies for tracking strong discontinuities in computational failure mechanics. In: Fifth world congress on computational mechanics. Mang HA, Rammerstorfer FC, Eberhardsteiner J. Vienna, Austria, pp 7-12 es_ES
dc.description.references Ooi ET, Man H, Natarajan S, Song C (2015) Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modelling. Eng Fract Mech 144:101–117 es_ES
dc.description.references Owen DRJ, Fawkes AJ (1983) Engineering fracture mechanics: numerical methods and applications. Pineridge Press Ltd., Swansea es_ES
dc.description.references Qian G, Wang M (1996) Symmetric branching of mode II and mixed-mode fatigue crack growth in a stainless steel. J Eng Mater Technol 118:356–361 es_ES
dc.description.references Qian G, González-Albuixech VF, Niffenegger M, Giner E (2016) Comparison of KI calculation methods. Eng Fract Mech 156:52–67 es_ES
dc.description.references Rashid YR (1968) Analysis of prestressed concrete reactor vessels. Nucl Eng Des 7:334–334 es_ES
dc.description.references Rice JR, Tracey DM (1973) Computational fracture mechanics. In: Numerical and computer methods in structural mechanics. Fenves SJ, Perrone N, Robinson AR, Schnobrich WC, Academic Press, New York, pp 585-623 es_ES
dc.description.references Saouma VE, Ingraffea AR (1981) Fracture mechanics analysis of discrete cracking. In: Proceedings, IABSE colloquium on advanced mechanics of reinforced concrete, Delft 393 es_ES
dc.description.references Song JH, Wang H, Belytschko T (2008) A comparative study on finite element methods for dynamic fracture. Comput Mech 42:239–250 es_ES
dc.description.references Staroselsky A, Acharya R, Cassenti B (2019) Phase field modeling of fracture and crack growth. Eng Fract Mech 205:268–284 es_ES
dc.description.references Stolarska D, Chopp L, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51(8):943–960 es_ES
dc.description.references Turner MJ, Clough RW, Martin HC, Topp LJ (1956) Stiffness and deflection analysis of complex structures. J Aeronaut Sci 23:805–823 es_ES
dc.description.references Xu X, Needleman A (1994) Numerical simulation of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem