Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914u
Li, J., Corma, A., & Yu, J. (2015). Synthesis of new zeolite structures. Chemical Society Reviews, 44(20), 7112-7127. doi:10.1039/c5cs00023h
Čejka, J., Millini, R., Opanasenko, M., Serrano, D. P., & Roth, W. J. (2020). Advances and challenges in zeolite synthesis and catalysis. Catalysis Today, 345, 2-13. doi:10.1016/j.cattod.2019.10.021
[+]
Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914u
Li, J., Corma, A., & Yu, J. (2015). Synthesis of new zeolite structures. Chemical Society Reviews, 44(20), 7112-7127. doi:10.1039/c5cs00023h
Čejka, J., Millini, R., Opanasenko, M., Serrano, D. P., & Roth, W. J. (2020). Advances and challenges in zeolite synthesis and catalysis. Catalysis Today, 345, 2-13. doi:10.1016/j.cattod.2019.10.021
Rimer, J. D. (2018). Rational design of zeolite catalysts. Nature Catalysis, 1(7), 488-489. doi:10.1038/s41929-018-0114-5
Barrer, R. M. (1960). Stabilization of lattices by sorbed and included molecules. Journal of Physics and Chemistry of Solids, 16(1-2), 84-89. doi:10.1016/0022-3697(60)90076-7
Zones, S. I. (1989). Synthesis of pentasil zeolites from sodium silicate solutions in the presence of quaternary imidazole compounds. Zeolites, 9(6), 458-467. doi:10.1016/0144-2449(89)90039-0
Davis, M. E. (1993). New vistas in zeolite and molecular sieve catalysis. Accounts of Chemical Research, 26(3), 111-115. doi:10.1021/ar00027a006
Gies, H., & Marker, B. (1992). The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O. Zeolites, 12(1), 42-49. doi:10.1016/0144-2449(92)90008-d
Boyett, R. E., Stevens, A. P., Ford, M. G., & Cox, P. A. (1996). A quantitative shape analysis of organic templates employed in zeolite synthesis. Zeolites, 17(5-6), 508-512. doi:10.1016/s0144-2449(96)00073-5
Bell, R. G., Lewis, D. W., Voigt, P., Freeman, C. M., Thomas, J. M., & Catlow, C. R. A. (1994). Computer Modelling of Sorbates and Templates in Microporous Materials. Zeolites and Related Microporous Materials: State of the Art 1994 - Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 17-22 July 1994, 2075-2082. doi:10.1016/s0167-2991(08)63768-4
Cox, P. A., Casci, J. L., & Stevens, A. P. (1997). Molecular modelling of templated zeolite synthesis. Faraday Discussions, 106, 473-487. doi:10.1039/a701487b
Wagner, P., Nakagawa, Y., Lee, G. S., Davis, M. E., Elomari, S., Medrud, R. C., & Zones, S. I. (2000). Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 122(2), 263-273. doi:10.1021/ja990722u
Shi, C., Li, L., Yang, L., & Li, Y. (2020). Molecular simulations of host-guest interactions between zeolite framework STW and its organic structure-directing agents. Chinese Chemical Letters, 31(7), 1951-1955. doi:10.1016/j.cclet.2020.01.016
Burton, A. W., Lee, G. S., & Zones, S. I. (2006). Phase selectivity in the syntheses of cage-based zeolite structures: An investigation of thermodynamic interactions between zeolite hosts and structure directing agents by molecular modeling. Microporous and Mesoporous Materials, 90(1-3), 129-144. doi:10.1016/j.micromeso.2005.11.022
Gálvez-Llompart, M., Cantín, A., Rey, F., & Sastre, G. (2018). Computational screening of structure directing agents for the synthesis of zeolites. A simplified model. Zeitschrift für Kristallographie - Crystalline Materials, 234(7-8), 451-460. doi:10.1515/zkri-2018-2132
Gálvez-Llompart, M., Gálvez, J., Rey, F., & Sastre, G. (2020). Identification of New Templates for the Synthesis of BEA, BEC, and ISV Zeolites Using Molecular Topology and Monte Carlo Techniques. Journal of Chemical Information and Modeling, 60(6), 2819-2829. doi:10.1021/acs.jcim.0c00231
Schmidt, J. E., Deem, M. W., & Davis, M. E. (2014). Synthesis of a Specified, Silica Molecular Sieve by Using Computationally Predicted Organic Structure-Directing Agents. Angewandte Chemie International Edition, 53(32), 8372-8374. doi:10.1002/anie.201404076
Daeyaert, F., & Deem, M. W. (2019). Design of organic structure directing agents for polymorph A zeolite beta. Journal of Materials Chemistry A, 7(16), 9854-9866. doi:10.1039/c8ta11913a
Daeyaert, F., Ye, F., & Deem, M. W. (2019). Machine-learning approach to the design of OSDAs for zeolite beta. Proceedings of the National Academy of Sciences, 116(9), 3413-3418. doi:10.1073/pnas.1818763116
Camblor, M. A., Corma, A., Lightfoot, P., Villaescusa, L. A., & Wright, P. A. (1997). Synthesis and Structure of ITQ-3, the First Pure Silica Polymorph with a Two-Dimensional System of Straight Eight-Ring Channels. Angewandte Chemie International Edition in English, 36(23), 2659-2661. doi:10.1002/anie.199726591
Olson, D. H., Camblor, M. A., Villaescusa, L. A., & Kuehl, G. H. (2004). Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous and Mesoporous Materials, 67(1), 27-33. doi:10.1016/j.micromeso.2003.09.025
SciFinder; CAS: Columbus, OH, 2020. https://www.cas.org/products/scifinder. (Accessed July 15th, 2020)
Foster, M. D., Rivin, I., Treacy, M. M. J., & Delgado Friedrichs, O. (2006). A geometric solution to the largest-free-sphere problem in zeolite frameworks. Microporous and Mesoporous Materials, 90(1-3), 32-38. doi:10.1016/j.micromeso.2005.08.025
[-]