- -

Computational Screening of Structure-Directing Agents for the Synthesis of Pure Silica ITE Zeolite

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational Screening of Structure-Directing Agents for the Synthesis of Pure Silica ITE Zeolite

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author León-Rubio, Santiago es_ES
dc.contributor.author SASTRE NAVARRO, GERMAN IGNACIO es_ES
dc.date.accessioned 2021-03-30T03:30:39Z
dc.date.available 2021-03-30T03:30:39Z
dc.date.issued 2020-08-06 es_ES
dc.identifier.issn 1948-7185 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164535
dc.description This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.jpclett.0c01734. es_ES
dc.description.abstract [EN] "Shape" was the first criterion claimed to explain the specificity between organic structure-directing agents (OSDAs) and zeolite micropores. With the advent of computational chemistry methods applied to study the effectiveness of SDA-zeolite combinations, "energy" (mainly van der Waals) became the most commonly invoked concept to explain the zeolite phase selectivity. The lower the energy, the better the SDA_ In this study, we rescue the concept of shape, and we combine it with the concept of energy within the frame of a SDA screening approach to identify new SDAs for the synthesis of cage-based ITE zeolite. Once we identify an appropriate shape fingerprint, filtering through the SDA database can be done quickly and accurately. With the shape selection, an automated Monte Carlo software allows us to assess the suitability using the force-field-calculated zeo-SDA energy. The computational approach can be promptly applied to other cage-based zeolites. es_ES
dc.description.sponsorship We thank MICINN of Spain for funding through projects RTI2018-101784-B-I00, RTI2018-101033-B-I00, and SEV-2016-0683. S.L. thanks MICINN for the predoctoral grant BES-2017-081245 corresponding to project SEV-2016-068317-2. Prof. A. Corma is acknowledged for collaboration from the SEV-2016-0683 project. We thank ASIC-UPV for the use of their computational facilities. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof The Journal of Physical Chemistry Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Computational chemistry es_ES
dc.subject Zeolite es_ES
dc.subject Template es_ES
dc.subject SDAO es_ES
dc.subject Microporous materials es_ES
dc.title Computational Screening of Structure-Directing Agents for the Synthesis of Pure Silica ITE Zeolite es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acs.jpclett.0c01734 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F130/ES/Química sostenible: Catalizadores moleculares y supramoleculares altamente selectivos, estables y energéticamente eficientes en reacciones químicas./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101784-B-I00/ES/NUEVOS MATERIALES ZEOLITICOS PARA PROCESOS DE SEPARACION SELECTIVA DE GASES, APLICACIONES MEDIOAMBIENTALES Y CONSERVACION DE ALIMENTOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2017-081245/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-068317-2/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation León-Rubio, S.; Sastre Navarro, GI. (2020). Computational Screening of Structure-Directing Agents for the Synthesis of Pure Silica ITE Zeolite. The Journal of Physical Chemistry Letters. 11(15):6164-6167. https://doi.org/10.1021/acs.jpclett.0c01734 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acs.jpclett.0c01734 es_ES
dc.description.upvformatpinicio 6164 es_ES
dc.description.upvformatpfin 6167 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 15 es_ES
dc.identifier.pmid 32659095 es_ES
dc.relation.pasarela S\417951 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914u es_ES
dc.description.references Li, J., Corma, A., & Yu, J. (2015). Synthesis of new zeolite structures. Chemical Society Reviews, 44(20), 7112-7127. doi:10.1039/c5cs00023h es_ES
dc.description.references Čejka, J., Millini, R., Opanasenko, M., Serrano, D. P., & Roth, W. J. (2020). Advances and challenges in zeolite synthesis and catalysis. Catalysis Today, 345, 2-13. doi:10.1016/j.cattod.2019.10.021 es_ES
dc.description.references Rimer, J. D. (2018). Rational design of zeolite catalysts. Nature Catalysis, 1(7), 488-489. doi:10.1038/s41929-018-0114-5 es_ES
dc.description.references Barrer, R. M. (1960). Stabilization of lattices by sorbed and included molecules. Journal of Physics and Chemistry of Solids, 16(1-2), 84-89. doi:10.1016/0022-3697(60)90076-7 es_ES
dc.description.references Zones, S. I. (1989). Synthesis of pentasil zeolites from sodium silicate solutions in the presence of quaternary imidazole compounds. Zeolites, 9(6), 458-467. doi:10.1016/0144-2449(89)90039-0 es_ES
dc.description.references Davis, M. E. (1993). New vistas in zeolite and molecular sieve catalysis. Accounts of Chemical Research, 26(3), 111-115. doi:10.1021/ar00027a006 es_ES
dc.description.references Gies, H., & Marker, B. (1992). The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O. Zeolites, 12(1), 42-49. doi:10.1016/0144-2449(92)90008-d es_ES
dc.description.references Boyett, R. E., Stevens, A. P., Ford, M. G., & Cox, P. A. (1996). A quantitative shape analysis of organic templates employed in zeolite synthesis. Zeolites, 17(5-6), 508-512. doi:10.1016/s0144-2449(96)00073-5 es_ES
dc.description.references Bell, R. G., Lewis, D. W., Voigt, P., Freeman, C. M., Thomas, J. M., & Catlow, C. R. A. (1994). Computer Modelling of Sorbates and Templates in Microporous Materials. Zeolites and Related Microporous Materials: State of the Art 1994 - Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 17-22 July 1994, 2075-2082. doi:10.1016/s0167-2991(08)63768-4 es_ES
dc.description.references Cox, P. A., Casci, J. L., & Stevens, A. P. (1997). Molecular modelling of templated zeolite synthesis. Faraday Discussions, 106, 473-487. doi:10.1039/a701487b es_ES
dc.description.references Wagner, P., Nakagawa, Y., Lee, G. S., Davis, M. E., Elomari, S., Medrud, R. C., & Zones, S. I. (2000). Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 122(2), 263-273. doi:10.1021/ja990722u es_ES
dc.description.references Shi, C., Li, L., Yang, L., & Li, Y. (2020). Molecular simulations of host-guest interactions between zeolite framework STW and its organic structure-directing agents. Chinese Chemical Letters, 31(7), 1951-1955. doi:10.1016/j.cclet.2020.01.016 es_ES
dc.description.references Burton, A. W., Lee, G. S., & Zones, S. I. (2006). Phase selectivity in the syntheses of cage-based zeolite structures: An investigation of thermodynamic interactions between zeolite hosts and structure directing agents by molecular modeling. Microporous and Mesoporous Materials, 90(1-3), 129-144. doi:10.1016/j.micromeso.2005.11.022 es_ES
dc.description.references Gálvez-Llompart, M., Cantín, A., Rey, F., & Sastre, G. (2018). Computational screening of structure directing agents for the synthesis of zeolites. A simplified model. Zeitschrift für Kristallographie - Crystalline Materials, 234(7-8), 451-460. doi:10.1515/zkri-2018-2132 es_ES
dc.description.references Gálvez-Llompart, M., Gálvez, J., Rey, F., & Sastre, G. (2020). Identification of New Templates for the Synthesis of BEA, BEC, and ISV Zeolites Using Molecular Topology and Monte Carlo Techniques. Journal of Chemical Information and Modeling, 60(6), 2819-2829. doi:10.1021/acs.jcim.0c00231 es_ES
dc.description.references Schmidt, J. E., Deem, M. W., & Davis, M. E. (2014). Synthesis of a Specified, Silica Molecular Sieve by Using Computationally Predicted Organic Structure-Directing Agents. Angewandte Chemie International Edition, 53(32), 8372-8374. doi:10.1002/anie.201404076 es_ES
dc.description.references Daeyaert, F., & Deem, M. W. (2019). Design of organic structure directing agents for polymorph A zeolite beta. Journal of Materials Chemistry A, 7(16), 9854-9866. doi:10.1039/c8ta11913a es_ES
dc.description.references Daeyaert, F., Ye, F., & Deem, M. W. (2019). Machine-learning approach to the design of OSDAs for zeolite beta. Proceedings of the National Academy of Sciences, 116(9), 3413-3418. doi:10.1073/pnas.1818763116 es_ES
dc.description.references Camblor, M. A., Corma, A., Lightfoot, P., Villaescusa, L. A., & Wright, P. A. (1997). Synthesis and Structure of ITQ-3, the First Pure Silica Polymorph with a Two-Dimensional System of Straight Eight-Ring Channels. Angewandte Chemie International Edition in English, 36(23), 2659-2661. doi:10.1002/anie.199726591 es_ES
dc.description.references Olson, D. H., Camblor, M. A., Villaescusa, L. A., & Kuehl, G. H. (2004). Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous and Mesoporous Materials, 67(1), 27-33. doi:10.1016/j.micromeso.2003.09.025 es_ES
dc.description.references SciFinder; CAS: Columbus, OH, 2020. https://www.cas.org/products/scifinder. (Accessed July 15th, 2020) es_ES
dc.description.references Foster, M. D., Rivin, I., Treacy, M. M. J., & Delgado Friedrichs, O. (2006). A geometric solution to the largest-free-sphere problem in zeolite frameworks. Microporous and Mesoporous Materials, 90(1-3), 32-38. doi:10.1016/j.micromeso.2005.08.025 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem