- -

Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods

Show full item record

Limones Herrero, D.; Palumbo, F.; Vendrell Criado, V.; Andreu Ros, MI.; Lence, E.; González-Bello, C.; Miranda Alonso, MÁ.... (2020). Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy. 226:1-8. https://doi.org/10.1016/j.saa.2019.117652

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164754

Files in this item

Item Metadata

Title: Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods
Author: Limones Herrero, Daniel Palumbo, Fabrizio Vendrell Criado, Victoria Andreu Ros, María Inmaculada Lence, Emilio González-Bello, Concepción Miranda Alonso, Miguel Ángel Jiménez Molero, María Consuelo
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] Transient absorption spectroscopy in combination with in silico methods has been employed to study the interactions between human serum albumin (HSA) and the anti-psychotic agent chlorpromazine (CPZ) as well as its ...[+]
Subjects: Carprofen , Docking , Human serum albumin , Laser flash photolysis , Molecular dynamics simulations
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy. (issn: 1386-1425 )
DOI: 10.1016/j.saa.2019.117652
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.saa.2019.117652
Project ID:
info:eu-repo/grantAgreement/Xunta de Galicia//ED431G%2F09/
...[+]
info:eu-repo/grantAgreement/Xunta de Galicia//ED431G%2F09/
info:eu-repo/grantAgreement/Xunta de Galicia//ED431B 2018%2F04/
info:eu-repo/grantAgreement/MINECO//CTQ2016-78875-P/ES/CONTROL SUPRAMOLECULAR DE LA FOTORREACTIVIDAD EN MEDIOS MICROHETEROGENOS BASADOS EN AMINOACIDOS: GELES MOLECULARES Y PROTEINAS TRANSPORTADORAS COMO NANORREACTORES./
info:eu-repo/grantAgreement/MINECO//SAF2016-75638-R/ES/DESARROLLO DE NUEVOS FARMACOS PARA EL TRATAMIENTO DE LAS INFECCIONES BACTERIANAS MULTIRESISTENTES: APROXIMACIONES QUE INCIDEN SOBRE VIABILIDAD, RESISTENCIA Y VIRULENCIA/
info:eu-repo/grantAgreement/MICINN//BES-2011-043706/ES/BES-2011-043706/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/
info:eu-repo/grantAgreement/ISCIII//CP1116%2F00052/
[-]
Thanks:
Financial support from Ministerio de Economia, Industria y Competitividad (CTQ2016-78875-P, SAF2016-75638-R, BES-2011-043706), Generalitat Valenciana (Prometeo 2017/075), Xunta de Galicia [Centro Singular de Investigacion ...[+]
Type: Artículo

References

Yang, G. X., Li, X., & Snyder, M. (2012). Investigating metabolite–protein interactions: An overview of available techniques. Methods, 57(4), 459-466. doi:10.1016/j.ymeth.2012.06.013

S. Hage, D., Anguizola, J., Barnaby, O., Jackson, A., J. Yoo, M., Papastavros, E., … Tong, Z. (2011). Characterization of Drug Interactions with Serum Proteins by Using High-Performance Affinity Chromatography. Current Drug Metabolism, 12(4), 313-328. doi:10.2174/138920011795202938

Matsuda, R., Bi, C., Anguizola, J., Sobansky, M., Rodriguez, E., Vargas Badilla, J., … Hage, D. S. (2014). Studies of metabolite–protein interactions: A review. Journal of Chromatography B, 966, 48-58. doi:10.1016/j.jchromb.2013.11.043 [+]
Yang, G. X., Li, X., & Snyder, M. (2012). Investigating metabolite–protein interactions: An overview of available techniques. Methods, 57(4), 459-466. doi:10.1016/j.ymeth.2012.06.013

S. Hage, D., Anguizola, J., Barnaby, O., Jackson, A., J. Yoo, M., Papastavros, E., … Tong, Z. (2011). Characterization of Drug Interactions with Serum Proteins by Using High-Performance Affinity Chromatography. Current Drug Metabolism, 12(4), 313-328. doi:10.2174/138920011795202938

Matsuda, R., Bi, C., Anguizola, J., Sobansky, M., Rodriguez, E., Vargas Badilla, J., … Hage, D. S. (2014). Studies of metabolite–protein interactions: A review. Journal of Chromatography B, 966, 48-58. doi:10.1016/j.jchromb.2013.11.043

López-Muñoz, F., Alamo, C., cuenca, E., Shen, W., Clervoy, P., & Rubio, G. (2005). History of the Discovery and Clinical Introduction of Chlorpromazine. Annals of Clinical Psychiatry, 17(3), 113-135. doi:10.1080/10401230591002002

Beckett, A. H., Beaven, M. A., & Robinson, A. E. (1963). Metabolism of chlorpromazine in humans. Biochemical Pharmacology, 12(8), 779-794. doi:10.1016/0006-2952(63)90108-4

Chetty, M., Moodley, S. V., & Miller, R. (1994). Important Metabolites to Measure in Pharmacodynamic Studies of Chlorpromazine. Therapeutic Drug Monitoring, 16(1), 30-36. doi:10.1097/00007691-199402000-00004

Hubbard, J. W., Midha, K. K., Hawes, E. M., McKAY, G., Marder, S. R., Aravagiri, M., & Korchinski, E. D. (1993). Metabolism of Phenothiazine and Butyrophenone Antipsychotic Drugs. British Journal of Psychiatry, 163(S22), 19-24. doi:10.1192/s0007125000292556

García, C., Oyola, R., Piñero, L. E., Arce, R., Silva, J., & Sánchez, V. (2005). Substitution and Solvent Effects on the Photophysical Properties of Several Series of 10-Alkylated Phenothiazine Derivatives. The Journal of Physical Chemistry A, 109(15), 3360-3371. doi:10.1021/jp044530j

Navaratnam, S., Parsons, B. J., Phillips, G. O., & Davies, A. K. (1978). Laser flash photolysis study of the photoionisation of chlorpromazine and promazine in solution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 74(0), 1811. doi:10.1039/f19787401811

Palumbo, F., Garcia-Lainez, G., Limones-Herrero, D., Coloma, M. D., Escobar, J., Jiménez, M. C., … Andreu, I. (2016). Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites. Toxicology and Applied Pharmacology, 313, 131-137. doi:10.1016/j.taap.2016.10.024

Garcia, C., Smith, G. A., McGimpsey, W. G., Kochevar, I. E., & Redmond, R. W. (1995). Mechanism and Solvent Dependence for Photoionization of Promazine and Chlorpromazine. Journal of the American Chemical Society, 117(44), 10871-10878. doi:10.1021/ja00149a010

Nath, S., & Sapre, A. V. (2001). Photoinduced electron transfer from chloropromazine and promethazine to chloroalkanes accompanied by cleavage of C–Cl bond. Chemical Physics Letters, 344(1-2), 138-146. doi:10.1016/s0009-2614(01)00685-6

Joshi, R., Ghanty, T. K., & Mukherjee, T. (2008). Reactions and structural investigation of chlorpromazine radical cation. Journal of Molecular Structure, 888(1-3), 401-408. doi:10.1016/j.molstruc.2008.01.025

He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358(6383), 209-215. doi:10.1038/358209a0

Sharples, D. (1974). The binding of chlorpromazine to human serum albumin. Journal of Pharmacy and Pharmacology, 26(8), 640-641. doi:10.1111/j.2042-7158.1974.tb10679.x

Verbeeck, R. K., Cardinal, J.-A., Hill, A. G., & Midha, K. K. (1983). Binding of phenothiazine neuroleptics to plasma proteins. Biochemical Pharmacology, 32(17), 2565-2570. doi:10.1016/0006-2952(83)90019-9

Silva, D., Cortez, C. M., & Louro, S. R. W. (2004). Quenching of the intrinsic fluorescence of bovine serum albumin by chlorpromazine and hemin. Brazilian Journal of Medical and Biological Research, 37(7), 963-968. doi:10.1590/s0100-879x2004000700004

Lázaro, E., Lowe, P. J., Briand, X., & Faller, B. (2008). New Approach To Measure Protein Binding Based on a Parallel Artificial Membrane Assay and Human Serum Albumin. Journal of Medicinal Chemistry, 51(7), 2009-2017. doi:10.1021/jm7012826

Kaddurah-Daouk, R., Kristal, B. S., & Weinshilboum, R. M. (2008). Metabolomics: A Global Biochemical Approach to Drug Response and Disease. Annual Review of Pharmacology and Toxicology, 48(1), 653-683. doi:10.1146/annurev.pharmtox.48.113006.094715

Korkuć, P., & Walther, D. (2015). Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity. Frontiers in Molecular Biosciences, 2. doi:10.3389/fmolb.2015.00051

Ohnmacht, C. M., Chen, S., Tong, Z., & Hage, D. S. (2006). Studies by biointeraction chromatography of binding by phenytoin metabolites to human serum albumin. Journal of Chromatography B, 836(1-2), 83-91. doi:10.1016/j.jchromb.2006.03.043

Roelofs, K. G., Wang, J., Sintim, H. O., & Lee, V. T. (2011). Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proceedings of the National Academy of Sciences, 108(37), 15528-15533. doi:10.1073/pnas.1018949108

Jimenez, M., & Miranda, M. (2015). Triplet Excited States as a Source of Relevant (Bio)Chemical Information. Current Topics in Medicinal Chemistry, 14(23), 2734-2742. doi:10.2174/1568026614666141216100907

Jiménez, M. C., Miranda, M. A., & Vayá, I. (2005). Triplet Excited States as Chiral Reporters for the Binding of Drugs to Transport Proteins. Journal of the American Chemical Society, 127(29), 10134-10135. doi:10.1021/ja0514489

Vayá, I., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2006). Use of Triplet Excited States for the Study of Drug Binding to Human and Bovine Serum Albumins. ChemMedChem, 1(9), 1015-1020. doi:10.1002/cmdc.200600061

Vayá, I., Jiménez, M. C., & Miranda, M. A. (2008). Transient Absorption Spectroscopy for Determining Multiple Site Occupancy in Drug−Protein Conjugates. A Comparison between Human and Bovine Serum Albumins Using Flurbiprofen Methyl Ester as a Probe. The Journal of Physical Chemistry B, 112(9), 2694-2699. doi:10.1021/jp076960q

Pérez-Ruiz, R., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2010). In situ Transient Absorption Spectroscopy to Assess Competition between Serum Albumin and Alpha-1-Acid Glycoprotein for Drug Transport. The Journal of Physical Chemistry Letters, 1(5), 829-833. doi:10.1021/jz1000227

Nuin, E., Jiménez, M. C., Sastre, G., Andreu, I., & Miranda, M. A. (2013). Drug–Drug Interactions within Protein Cavities Probed by Triplet–Triplet Energy Transfer. The Journal of Physical Chemistry Letters, 4(10), 1603-1607. doi:10.1021/jz400640s

Alonso, R., Yamaji, M., Jiménez, M. C., & Miranda, M. A. (2010). Enhanced Photostability of the Anthracene Chromophore in Aqueous Medium upon Protein Encapsulation. The Journal of Physical Chemistry B, 114(34), 11363-11369. doi:10.1021/jp104900r

Alonso, R., Jiménez, M. C., & Miranda, M. A. (2011). Stereodifferentiation in the Compartmentalized Photooxidation of a Protein-Bound Anthracene. Organic Letters, 13(15), 3860-3863. doi:10.1021/ol201209h

Kitamura, K., Fujitani, K., Takahashi, K., Tanaka, Y., Hirako, S., Kotani, C., … Takegami, S. (2000). Synthesis of [N-13CH3] drugs (chlorpromazine, triflupromazine and promazine). Journal of Labelled Compounds and Radiopharmaceuticals, 43(9), 865-872. doi:10.1002/1099-1344(200008)43:9<865::aid-jlcr370>3.0.co;2-e

Ghuman, J., Zunszain, P. A., Petitpas, I., Bhattacharya, A. A., Otagiri, M., & Curry, S. (2005). Structural Basis of the Drug-binding Specificity of Human Serum Albumin. Journal of Molecular Biology, 353(1), 38-52. doi:10.1016/j.jmb.2005.07.075

Pérez-Ruiz, R., Molins-Molina, O., Lence, E., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2018). Photogeneration of Quinone Methides as Latent Electrophiles for Lysine Targeting. The Journal of Organic Chemistry, 83(21), 13019-13029. doi:10.1021/acs.joc.8b01559

Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. Journal of Chemical Theory and Computation, 9(7), 3084-3095. doi:10.1021/ct400341p

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record