- -

Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods

Show simple item record

Files in this item

dc.contributor.author Limones Herrero, Daniel es_ES
dc.contributor.author Palumbo, Fabrizio es_ES
dc.contributor.author Vendrell Criado, Victoria es_ES
dc.contributor.author Andreu Ros, María Inmaculada es_ES
dc.contributor.author Lence, Emilio es_ES
dc.contributor.author González-Bello, Concepción es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.date.accessioned 2021-03-31T03:30:24Z
dc.date.available 2021-03-31T03:30:24Z
dc.date.issued 2020-02-05 es_ES
dc.identifier.issn 1386-1425 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164754
dc.description.abstract [EN] Transient absorption spectroscopy in combination with in silico methods has been employed to study the interactions between human serum albumin (HSA) and the anti-psychotic agent chlorpromazine (CPZ) as well as its two demethylated metabolites (MCPZ and DCPZ). Thus, solutions containing CPZ, MCPZ or DCPZ and HSA (molar ligand:protein ratios between 1:0 and 1:3) were submitted to laser flash photolysis and the Delta A(max) value at lambda = 470 nm, corresponding to the triplet excited state, was monitored. In all cases, the protein-bound ligand exhibited higher Delta Amax values measured after the laser pulse and were also considerably longer-lived than the non-complexed forms. This is in agreement with an enhanced hydrophilicity of the metabolites, due to the replacement of methyl groups with H that led to a lower extent of protein binding. For the three compounds, laser flash photolysis displacement experiments using warfarin or ibuprofen indicated Sudlow site I as the main binding site. Docking and molecular dynamics simulation studies revealed that the binding mode of the two demethylated ligands with HSA would be remarkable different from CPZ, specially for DCPZ, which appears to come from the different ability of their terminal ammonium groups to stablish hydrogen bonding interactions with the negatively charged residues within the protein pocket (Glu153, Glu292) as well as to allocate the methyl groups in an apolar environment. DCPZ would be rotated 180 degrees in relation to CPZ locating the aromatic ring away from the Sudlow site I of HSA. (C) 2019 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship Financial support from Ministerio de Economia, Industria y Competitividad (CTQ2016-78875-P, SAF2016-75638-R, BES-2011-043706), Generalitat Valenciana (Prometeo 2017/075), Xunta de Galicia [Centro Singular de Investigacion de Galicia accreditation 2016-2019 (ED431G/09, ED431B 2018/04) and post-doctoral fellowship to E. L.] and European Union (European Regional Development Fund-ERDF) is gratefully acknowledged. I. A. holds a "Miguel Servet" contract (CP1116/00052) funded by the Carlos III Health Institute. We are grateful to the Centro de Supercomputacion de Galicia (CESGA) for computational facilities. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Carprofen es_ES
dc.subject Docking es_ES
dc.subject Human serum albumin es_ES
dc.subject Laser flash photolysis es_ES
dc.subject Molecular dynamics simulations es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.saa.2019.117652 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//ED431G%2F09/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//ED431B 2018%2F04/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-78875-P/ES/CONTROL SUPRAMOLECULAR DE LA FOTORREACTIVIDAD EN MEDIOS MICROHETEROGENOS BASADOS EN AMINOACIDOS: GELES MOLECULARES Y PROTEINAS TRANSPORTADORAS COMO NANORREACTORES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SAF2016-75638-R/ES/DESARROLLO DE NUEVOS FARMACOS PARA EL TRATAMIENTO DE LAS INFECCIONES BACTERIANAS MULTIRESISTENTES: APROXIMACIONES QUE INCIDEN SOBRE VIABILIDAD, RESISTENCIA Y VIRULENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-043706/ES/BES-2011-043706/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//CP1116%2F00052/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Limones Herrero, D.; Palumbo, F.; Vendrell Criado, V.; Andreu Ros, MI.; Lence, E.; González-Bello, C.; Miranda Alonso, MÁ.... (2020). Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy. 226:1-8. https://doi.org/10.1016/j.saa.2019.117652 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.saa.2019.117652 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 226 es_ES
dc.identifier.pmid 31654902 es_ES
dc.relation.pasarela S\413160 es_ES
dc.contributor.funder Xunta de Galicia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Yang, G. X., Li, X., & Snyder, M. (2012). Investigating metabolite–protein interactions: An overview of available techniques. Methods, 57(4), 459-466. doi:10.1016/j.ymeth.2012.06.013 es_ES
dc.description.references S. Hage, D., Anguizola, J., Barnaby, O., Jackson, A., J. Yoo, M., Papastavros, E., … Tong, Z. (2011). Characterization of Drug Interactions with Serum Proteins by Using High-Performance Affinity Chromatography. Current Drug Metabolism, 12(4), 313-328. doi:10.2174/138920011795202938 es_ES
dc.description.references Matsuda, R., Bi, C., Anguizola, J., Sobansky, M., Rodriguez, E., Vargas Badilla, J., … Hage, D. S. (2014). Studies of metabolite–protein interactions: A review. Journal of Chromatography B, 966, 48-58. doi:10.1016/j.jchromb.2013.11.043 es_ES
dc.description.references López-Muñoz, F., Alamo, C., cuenca, E., Shen, W., Clervoy, P., & Rubio, G. (2005). History of the Discovery and Clinical Introduction of Chlorpromazine. Annals of Clinical Psychiatry, 17(3), 113-135. doi:10.1080/10401230591002002 es_ES
dc.description.references Beckett, A. H., Beaven, M. A., & Robinson, A. E. (1963). Metabolism of chlorpromazine in humans. Biochemical Pharmacology, 12(8), 779-794. doi:10.1016/0006-2952(63)90108-4 es_ES
dc.description.references Chetty, M., Moodley, S. V., & Miller, R. (1994). Important Metabolites to Measure in Pharmacodynamic Studies of Chlorpromazine. Therapeutic Drug Monitoring, 16(1), 30-36. doi:10.1097/00007691-199402000-00004 es_ES
dc.description.references Hubbard, J. W., Midha, K. K., Hawes, E. M., McKAY, G., Marder, S. R., Aravagiri, M., & Korchinski, E. D. (1993). Metabolism of Phenothiazine and Butyrophenone Antipsychotic Drugs. British Journal of Psychiatry, 163(S22), 19-24. doi:10.1192/s0007125000292556 es_ES
dc.description.references García, C., Oyola, R., Piñero, L. E., Arce, R., Silva, J., & Sánchez, V. (2005). Substitution and Solvent Effects on the Photophysical Properties of Several Series of 10-Alkylated Phenothiazine Derivatives. The Journal of Physical Chemistry A, 109(15), 3360-3371. doi:10.1021/jp044530j es_ES
dc.description.references Navaratnam, S., Parsons, B. J., Phillips, G. O., & Davies, A. K. (1978). Laser flash photolysis study of the photoionisation of chlorpromazine and promazine in solution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 74(0), 1811. doi:10.1039/f19787401811 es_ES
dc.description.references Palumbo, F., Garcia-Lainez, G., Limones-Herrero, D., Coloma, M. D., Escobar, J., Jiménez, M. C., … Andreu, I. (2016). Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites. Toxicology and Applied Pharmacology, 313, 131-137. doi:10.1016/j.taap.2016.10.024 es_ES
dc.description.references Garcia, C., Smith, G. A., McGimpsey, W. G., Kochevar, I. E., & Redmond, R. W. (1995). Mechanism and Solvent Dependence for Photoionization of Promazine and Chlorpromazine. Journal of the American Chemical Society, 117(44), 10871-10878. doi:10.1021/ja00149a010 es_ES
dc.description.references Nath, S., & Sapre, A. V. (2001). Photoinduced electron transfer from chloropromazine and promethazine to chloroalkanes accompanied by cleavage of C–Cl bond. Chemical Physics Letters, 344(1-2), 138-146. doi:10.1016/s0009-2614(01)00685-6 es_ES
dc.description.references Joshi, R., Ghanty, T. K., & Mukherjee, T. (2008). Reactions and structural investigation of chlorpromazine radical cation. Journal of Molecular Structure, 888(1-3), 401-408. doi:10.1016/j.molstruc.2008.01.025 es_ES
dc.description.references He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358(6383), 209-215. doi:10.1038/358209a0 es_ES
dc.description.references Sharples, D. (1974). The binding of chlorpromazine to human serum albumin. Journal of Pharmacy and Pharmacology, 26(8), 640-641. doi:10.1111/j.2042-7158.1974.tb10679.x es_ES
dc.description.references Verbeeck, R. K., Cardinal, J.-A., Hill, A. G., & Midha, K. K. (1983). Binding of phenothiazine neuroleptics to plasma proteins. Biochemical Pharmacology, 32(17), 2565-2570. doi:10.1016/0006-2952(83)90019-9 es_ES
dc.description.references Silva, D., Cortez, C. M., & Louro, S. R. W. (2004). Quenching of the intrinsic fluorescence of bovine serum albumin by chlorpromazine and hemin. Brazilian Journal of Medical and Biological Research, 37(7), 963-968. doi:10.1590/s0100-879x2004000700004 es_ES
dc.description.references Lázaro, E., Lowe, P. J., Briand, X., & Faller, B. (2008). New Approach To Measure Protein Binding Based on a Parallel Artificial Membrane Assay and Human Serum Albumin. Journal of Medicinal Chemistry, 51(7), 2009-2017. doi:10.1021/jm7012826 es_ES
dc.description.references Kaddurah-Daouk, R., Kristal, B. S., & Weinshilboum, R. M. (2008). Metabolomics: A Global Biochemical Approach to Drug Response and Disease. Annual Review of Pharmacology and Toxicology, 48(1), 653-683. doi:10.1146/annurev.pharmtox.48.113006.094715 es_ES
dc.description.references Korkuć, P., & Walther, D. (2015). Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity. Frontiers in Molecular Biosciences, 2. doi:10.3389/fmolb.2015.00051 es_ES
dc.description.references Ohnmacht, C. M., Chen, S., Tong, Z., & Hage, D. S. (2006). Studies by biointeraction chromatography of binding by phenytoin metabolites to human serum albumin. Journal of Chromatography B, 836(1-2), 83-91. doi:10.1016/j.jchromb.2006.03.043 es_ES
dc.description.references Roelofs, K. G., Wang, J., Sintim, H. O., & Lee, V. T. (2011). Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proceedings of the National Academy of Sciences, 108(37), 15528-15533. doi:10.1073/pnas.1018949108 es_ES
dc.description.references Jimenez, M., & Miranda, M. (2015). Triplet Excited States as a Source of Relevant (Bio)Chemical Information. Current Topics in Medicinal Chemistry, 14(23), 2734-2742. doi:10.2174/1568026614666141216100907 es_ES
dc.description.references Jiménez, M. C., Miranda, M. A., & Vayá, I. (2005). Triplet Excited States as Chiral Reporters for the Binding of Drugs to Transport Proteins. Journal of the American Chemical Society, 127(29), 10134-10135. doi:10.1021/ja0514489 es_ES
dc.description.references Vayá, I., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2006). Use of Triplet Excited States for the Study of Drug Binding to Human and Bovine Serum Albumins. ChemMedChem, 1(9), 1015-1020. doi:10.1002/cmdc.200600061 es_ES
dc.description.references Vayá, I., Jiménez, M. C., & Miranda, M. A. (2008). Transient Absorption Spectroscopy for Determining Multiple Site Occupancy in Drug−Protein Conjugates. A Comparison between Human and Bovine Serum Albumins Using Flurbiprofen Methyl Ester as a Probe. The Journal of Physical Chemistry B, 112(9), 2694-2699. doi:10.1021/jp076960q es_ES
dc.description.references Pérez-Ruiz, R., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2010). In situ Transient Absorption Spectroscopy to Assess Competition between Serum Albumin and Alpha-1-Acid Glycoprotein for Drug Transport. The Journal of Physical Chemistry Letters, 1(5), 829-833. doi:10.1021/jz1000227 es_ES
dc.description.references Nuin, E., Jiménez, M. C., Sastre, G., Andreu, I., & Miranda, M. A. (2013). Drug–Drug Interactions within Protein Cavities Probed by Triplet–Triplet Energy Transfer. The Journal of Physical Chemistry Letters, 4(10), 1603-1607. doi:10.1021/jz400640s es_ES
dc.description.references Alonso, R., Yamaji, M., Jiménez, M. C., & Miranda, M. A. (2010). Enhanced Photostability of the Anthracene Chromophore in Aqueous Medium upon Protein Encapsulation. The Journal of Physical Chemistry B, 114(34), 11363-11369. doi:10.1021/jp104900r es_ES
dc.description.references Alonso, R., Jiménez, M. C., & Miranda, M. A. (2011). Stereodifferentiation in the Compartmentalized Photooxidation of a Protein-Bound Anthracene. Organic Letters, 13(15), 3860-3863. doi:10.1021/ol201209h es_ES
dc.description.references Kitamura, K., Fujitani, K., Takahashi, K., Tanaka, Y., Hirako, S., Kotani, C., … Takegami, S. (2000). Synthesis of [N-13CH3] drugs (chlorpromazine, triflupromazine and promazine). Journal of Labelled Compounds and Radiopharmaceuticals, 43(9), 865-872. doi:10.1002/1099-1344(200008)43:9<865::aid-jlcr370>3.0.co;2-e es_ES
dc.description.references Ghuman, J., Zunszain, P. A., Petitpas, I., Bhattacharya, A. A., Otagiri, M., & Curry, S. (2005). Structural Basis of the Drug-binding Specificity of Human Serum Albumin. Journal of Molecular Biology, 353(1), 38-52. doi:10.1016/j.jmb.2005.07.075 es_ES
dc.description.references Pérez-Ruiz, R., Molins-Molina, O., Lence, E., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2018). Photogeneration of Quinone Methides as Latent Electrophiles for Lysine Targeting. The Journal of Organic Chemistry, 83(21), 13019-13029. doi:10.1021/acs.joc.8b01559 es_ES
dc.description.references Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. Journal of Chemical Theory and Computation, 9(7), 3084-3095. doi:10.1021/ct400341p es_ES


This item appears in the following Collection(s)

Show simple item record