- -

Extending the study on the linear advection equation subject to stochastic velocity field and initial condition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extending the study on the linear advection equation subject to stochastic velocity field and initial condition

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calatayud, J. es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Dorini, F. A. es_ES
dc.contributor.author Jornet, M. es_ES
dc.date.accessioned 2021-03-31T03:30:40Z
dc.date.available 2021-03-31T03:30:40Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 0378-4754 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164755
dc.description.abstract [EN] In this paper we extend the study on the linear advection equation with independent stochastic velocity and initial condition performed in Dorini and Cunha (2011). By using both existing and novel results on the stochastic chain rule, we solve the random linear advection equation in the mean square sense. We provide a new expression for the probability density function of the solution stochastic process, which can be computed as accurately as wanted via Monte Carlo simulations, and which does not require the specific probability distribution of the integral of the velocity. This allows us to solve the non-Gaussian velocity case, which was not treated in the aforementioned contribution. Several numerical results illustrate the computations of the probability density function by using our approach. On the other hand, we derive a theoretical partial differential equation for the probability density function of the solution stochastic process. Finally, a shorter and easier derivation of the joint probability density function of the response process at two spatial points is obtained by applying conditional expectations appropriately. (C) 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM201789664-P. The co-author Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Mathematics and Computers in Simulation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Random linear advection equation es_ES
dc.subject Random partial differential equation es_ES
dc.subject Mean square calculus es_ES
dc.subject Random chain rule es_ES
dc.subject Probability density function es_ES
dc.subject Monte Carlo simulation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Extending the study on the linear advection equation subject to stochastic velocity field and initial condition es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.matcom.2019.12.014 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calatayud, J.; Cortés, J.; Dorini, FA.; Jornet, M. (2020). Extending the study on the linear advection equation subject to stochastic velocity field and initial condition. Mathematics and Computers in Simulation. 172:159-174. https://doi.org/10.1016/j.matcom.2019.12.014 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.matcom.2019.12.014 es_ES
dc.description.upvformatpinicio 159 es_ES
dc.description.upvformatpfin 174 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 172 es_ES
dc.relation.pasarela S\399353 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Cortés, J.-C., Villafuerte, L., & Burgos, C. (2017). A Mean Square Chain Rule and its Application in Solving the Random Chebyshev Differential Equation. Mediterranean Journal of Mathematics, 14(1). doi:10.1007/s00009-017-0853-6 es_ES
dc.description.references Dorini, F. A., & Cunha, M. C. C. (2011). On the linear advection equation subject to random velocity fields. Mathematics and Computers in Simulation, 82(4), 679-690. doi:10.1016/j.matcom.2011.10.008 es_ES
dc.description.references El-Wakil, S. A., Sallah, M., & El-Hanbaly, A. M. (2015). Random variable transformation for generalized stochastic radiative transfer in finite participating slab media. Physica A: Statistical Mechanics and its Applications, 435, 66-79. doi:10.1016/j.physa.2015.04.033 es_ES
dc.description.references Hussein, A., & Selim, M. M. (2009). Solution of the stochastic transport equation of neutral particles with anisotropic scattering using RVT technique. Applied Mathematics and Computation, 213(1), 250-261. doi:10.1016/j.amc.2009.03.016 es_ES
dc.description.references Hussein, A., & Selim, M. M. (2015). Solution of the stochastic generalized shallow-water wave equation using RVT technique. The European Physical Journal Plus, 130(12). doi:10.1140/epjp/i2015-15249-3 es_ES
dc.description.references Jardak, M., Su, C.-H., & Karniadakis, G. E. (2002). Journal of Scientific Computing, 17(1/4), 319-338. doi:10.1023/a:1015125304044 es_ES
dc.description.references Shvidler, M., & Karasaki, K. (2003). Transport in Porous Media, 50(3), 223-241. doi:10.1023/a:1021136708863 es_ES
dc.description.references Shvidler, M., & Karasaki, K. (2003). Transport in Porous Media, 50(3), 243-266. doi:10.1023/a:1021129325701 es_ES
dc.description.references Slama, H., El-Bedwhey, N. A., El-Depsy, A., & Selim, M. M. (2017). Solution of the finite Milne problem in stochastic media with RVT Technique. The European Physical Journal Plus, 132(12). doi:10.1140/epjp/i2017-11763-6 es_ES
dc.description.references Venturi, D., Tartakovsky, D. M., Tartakovsky, A. M., & Karniadakis, G. E. (2013). Exact PDF equations and closure approximations for advective-reactive transport. Journal of Computational Physics, 243, 323-343. doi:10.1016/j.jcp.2013.03.001 es_ES
dc.description.references Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem