- -

Synthesis of a hybrid Pd-0/Pd-carbide/carbon catalyst material with high for reactions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Synthesis of a hybrid Pd-0/Pd-carbide/carbon catalyst material with high for reactions

Show full item record

Garcia-Ortiz, A.; Vidal, JD.; Iborra Chornet, S.; Climent Olmedo, MJ.; Cored-Bandrés, J.; Ruano-Sánchez, D.; Pérez-Dieste, V.... (2020). Synthesis of a hybrid Pd-0/Pd-carbide/carbon catalyst material with high for reactions. Journal of Catalysis. 389:706-713. https://doi.org/10.1016/j.jcat.2020.06.036

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164817

Files in this item

Item Metadata

Title: Synthesis of a hybrid Pd-0/Pd-carbide/carbon catalyst material with high for reactions
Author: Garcia-Ortiz, Andrea Vidal, Juan D. Iborra Chornet, Sara Climent Olmedo, María José Cored-Bandrés, Jorge Ruano-Sánchez, Daniel Pérez-Dieste, Virginia Concepción Heydorn, Patricia Corma Canós, Avelino
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] We present a highly selective and active Pd carbon catalyst prepared by an easy hydrothermal synthesis method. This synthetic procedure allows the stabilization under mild conditions of interstitial carbon atoms on ...[+]
Subjects: Palladium carbide , Selective hydrogenation , Reductive amination , Synchrotron XPS , Hydrothermal synthesis
Copyrigths: Reserva de todos los derechos
Source:
Journal of Catalysis. (issn: 0021-9517 )
DOI: 10.1016/j.jcat.2020.06.036
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.jcat.2020.06.036
Project ID:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/MINECO//BES-2015-075748/ES/BES-2015-075748/
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/
Thanks:
The research leading to these results has received funding from the Spanish Ministry of Science, Innovation and Universities through "Severo Ochoa"Excellence Programme (SEV-2016-0683) and the PGC2018-097277-B-100 project. ...[+]
Type: Artículo

References

Borodziński, A., & Bond, G. C. (2008). Selective Hydrogenation of Ethyne in Ethene‐Rich Streams on Palladium Catalysts, Part 2: Steady‐State Kinetics and Effects of Palladium Particle Size, Carbon Monoxide, and Promoters. Catalysis Reviews, 50(3), 379-469. doi:10.1080/01614940802142102

Molnár, Á., Sárkány, A., & Varga, M. (2001). Hydrogenation of carbon–carbon multiple bonds: chemo-, regio- and stereo-selectivity. Journal of Molecular Catalysis A: Chemical, 173(1-2), 185-221. doi:10.1016/s1381-1169(01)00150-9

Jones, W., Wells, P. P., Gibson, E. K., Chutia, A., Silverwood, I. P., Catlow, C. R. A., & Bowker, M. (2019). Carbidisation of Pd Nanoparticles by Ethene Decomposition with Methane Production. ChemCatChem, 11(17), 4334-4339. doi:10.1002/cctc.201900795 [+]
Borodziński, A., & Bond, G. C. (2008). Selective Hydrogenation of Ethyne in Ethene‐Rich Streams on Palladium Catalysts, Part 2: Steady‐State Kinetics and Effects of Palladium Particle Size, Carbon Monoxide, and Promoters. Catalysis Reviews, 50(3), 379-469. doi:10.1080/01614940802142102

Molnár, Á., Sárkány, A., & Varga, M. (2001). Hydrogenation of carbon–carbon multiple bonds: chemo-, regio- and stereo-selectivity. Journal of Molecular Catalysis A: Chemical, 173(1-2), 185-221. doi:10.1016/s1381-1169(01)00150-9

Jones, W., Wells, P. P., Gibson, E. K., Chutia, A., Silverwood, I. P., Catlow, C. R. A., & Bowker, M. (2019). Carbidisation of Pd Nanoparticles by Ethene Decomposition with Methane Production. ChemCatChem, 11(17), 4334-4339. doi:10.1002/cctc.201900795

Bugaev, A. L., Guda, A. A., Pankin, I. A., Groppo, E., Pellegrini, R., Longo, A., … Lamberti, C. (2019). The role of palladium carbides in the catalytic hydrogenation of ethylene over supported palladium nanoparticles. Catalysis Today, 336, 40-44. doi:10.1016/j.cattod.2019.02.068

Bugaev, A. L., Guda, A. A., Lazzarini, A., Lomachenko, K. A., Groppo, E., Pellegrini, R., … Lamberti, C. (2017). In situ formation of hydrides and carbides in palladium catalyst: When XANES is better than EXAFS and XRD. Catalysis Today, 283, 119-126. doi:10.1016/j.cattod.2016.02.065

Teschner, D., Borsodi, J., Wootsch, A., Révay, Z., Hävecker, M., Knop-Gericke, A., … Schlögl, R. (2008). The Roles of Subsurface Carbon and Hydrogen in Palladium-Catalyzed Alkyne Hydrogenation. Science, 320(5872), 86-89. doi:10.1126/science.1155200

Michaelides, A., Hu, P., & Alavi, A. (1999). Physical origin of the high reactivity of subsurface hydrogen in catalytic hydrogenation. The Journal of Chemical Physics, 111(4), 1343-1345. doi:10.1063/1.479392

Khan, N. A., Shaikhutdinov, S., & Freund, H.-J. (2006). Acetylene and Ethylene Hydrogenation on Alumina Supported Pd-Ag Model Catalysts. Catalysis Letters, 108(3-4), 159-164. doi:10.1007/s10562-006-0041-y

Teschner, D., Révay, Z., Borsodi, J., Hävecker, M., Knop‐Gericke, A., Schlögl, R., … Sautet, P. (2008). Understanding Palladium Hydrogenation Catalysts: When the Nature of the Reactive Molecule Controls the Nature of the Catalyst Active Phase. Angewandte Chemie, 120(48), 9414-9418. doi:10.1002/ange.200802134

Teschner, D., Borsodi, J., Kis, Z., Szentmiklósi, L., Révay, Z., Knop-Gericke, A., … Sautet, P. (2010). Role of Hydrogen Species in Palladium-Catalyzed Alkyne Hydrogenation. The Journal of Physical Chemistry C, 114(5), 2293-2299. doi:10.1021/jp9103799

Torres, D., Cinquini, F., & Sautet, P. (2013). Pressure and Temperature Effects on the Formation of a Pd/C Surface Carbide: Insights into the Role of Pd/C as a Selective Catalytic State for the Partial Hydrogenation of Acetylene. The Journal of Physical Chemistry C, 117(21), 11059-11065. doi:10.1021/jp400059m

Singh, N., Nguyen, M.-T., Cantu, D. C., Mehdi, B. L., Browning, N. D., Fulton, J. L., … Lercher, J. A. (2018). Carbon-supported Pt during aqueous phenol hydrogenation with and without applied electrical potential: X-ray absorption and theoretical studies of structure and adsorbates. Journal of Catalysis, 368, 8-19. doi:10.1016/j.jcat.2018.09.021

Huang, F., Jia, Z., Diao, J., Yuan, H., Su, D., & Liu, H. (2019). Palladium nanoclusters immobilized on defective nanodiamond-graphene core-shell supports for semihydrogenation of phenylacetylene. Journal of Energy Chemistry, 33, 31-36. doi:10.1016/j.jechem.2018.08.006

Okitsu, K., Mizukoshi, Y., Bandow, H., Yamamoto, T. A., Nagata, Y., & Maeda, Y. (1997). Synthesis of Palladium Nanoparticles with Interstitial Carbon by Sonochemical Reduction of Tetrachloropalladate(II) in Aqueous Solution. The Journal of Physical Chemistry B, 101(28), 5470-5472. doi:10.1021/jp970415f

Guo, R., Chen, Q., Li, X., Liu, Y., Wang, C., Bi, W., … Jin, M. (2019). PdCx nanocrystals with tunable compositions for alkyne semihydrogenation. Journal of Materials Chemistry A, 7(9), 4714-4720. doi:10.1039/c8ta12002a

Beltzung, A., Newton, M. A., Nachtegaal, M., Wu, H., Storti, G., & Morbidelli, M. (2018). Research Update: Distribution and stabilization of Pd catalysts in porous carbon-based supports by aggregation of pre-doped colloidal particles. APL Materials, 6(10), 100704. doi:10.1063/1.5046552

Sevilla, M., Fuertes, A. B., & Mokaya, R. (2011). High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy & Environmental Science, 4(4), 1400. doi:10.1039/c0ee00347f

Liu, L., Gao, F., Concepción, P., & Corma, A. (2017). A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. Journal of Catalysis, 350, 218-225. doi:10.1016/j.jcat.2017.03.014

Makowski, P., Demir Cakan, R., Antonietti, M., Goettmann, F., & Titirici, M.-M. (2008). Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon. Chemical Communications, (8), 999. doi:10.1039/b717928f

Liu, L., Puga, A. V., Cored, J., Concepción, P., Pérez-Dieste, V., García, H., & Corma, A. (2018). Sunlight-assisted hydrogenation of CO 2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@C nanocomposites. Applied Catalysis B: Environmental, 235, 186-196. doi:10.1016/j.apcatb.2018.04.060

Liu, L., Concepción, P., & Corma, A. (2016). Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. Journal of Catalysis, 340, 1-9. doi:10.1016/j.jcat.2016.04.006

Cored, J., García-Ortiz, A., Iborra, S., Climent, M. J., Liu, L., Chuang, C.-H., … Corma, A. (2019). Hydrothermal Synthesis of Ruthenium Nanoparticles with a Metallic Core and a Ruthenium Carbide Shell for Low-Temperature Activation of CO2 to Methane. Journal of the American Chemical Society, 141(49), 19304-19311. doi:10.1021/jacs.9b07088

C.J. Powell, A.J., NIST Electron Inelastic Mean Free Path Database, version 1.1. National Institute of Standards and Technology: Gaithersburg, MD, 2002.

Sharma, H., Bhardwaj, M., Kour, M., & Paul, S. (2017). Highly efficient magnetic Pd(0) nanoparticles stabilized by amine functionalized starch for organic transformations under mild conditions. Molecular Catalysis, 435, 58-68. doi:10.1016/j.mcat.2017.03.019

Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., & Pöschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43(8), 1731-1742. doi:10.1016/j.carbon.2005.02.018

Baylet, A., Marécot, P., Duprez, D., Castellazzi, P., Groppi, G., & Forzatti, P. (2011). In situ Raman and in situ XRD analysis of PdO reduction and Pd° oxidation supported on γ-Al2O3 catalyst under different atmospheres. Physical Chemistry Chemical Physics, 13(10), 4607. doi:10.1039/c0cp01331e

C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J.R.Jr. Rumble, NIST Standart Reference Database 20, Version 3.4 can be found under http://srdata.nist.gov/xps/, 2003.

Tian, H., Huang, F., Zhu, Y., Liu, S., Han, Y., Jaroniec, M., … Liu, J. (2018). The Development of Yolk–Shell‐Structured Pd&ZnO@Carbon Submicroreactors with High Selectivity and Stability. Advanced Functional Materials, 28(32), 1801737. doi:10.1002/adfm.201801737

Peng, L., Zhang, J., Yang, S., Han, B., Sang, X., Liu, C., & Yang, G. (2015). The ionic liquid microphase enhances the catalytic activity of Pd nanoparticles supported by a metal–organic framework. Green Chem., 17(8), 4178-4182. doi:10.1039/c5gc01333j

Boucher, M. B., Zugic, B., Cladaras, G., Kammert, J., Marcinkowski, M. D., Lawton, T. J., … Flytzani-Stephanopoulos, M. (2013). Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Physical Chemistry Chemical Physics, 15(29), 12187. doi:10.1039/c3cp51538a

Armbrüster, M., Kovnir, K., Behrens, M., Teschner, D., Grin, Y., & Schlögl, R. (2010). Pd−Ga Intermetallic Compounds as Highly Selective Semihydrogenation Catalysts. Journal of the American Chemical Society, 132(42), 14745-14747. doi:10.1021/ja106568t

Panpranot, J., Phandinthong, K., Sirikajorn, T., Arai, M., & Praserthdam, P. (2007). Impact of palladium silicide formation on the catalytic properties of Pd/SiO2 catalysts in liquid-phase semihydrogenation of phenylacetylene. Journal of Molecular Catalysis A: Chemical, 261(1), 29-35. doi:10.1016/j.molcata.2006.07.053

Hu, J., Zhou, Z., Zhang, R., Li, L., & Cheng, Z. (2014). Selective hydrogenation of phenylacetylene over a nano-Pd/α-Al2O3 catalyst. Journal of Molecular Catalysis A: Chemical, 381, 61-69. doi:10.1016/j.molcata.2013.10.008

Markov, P. V., Mashkovsky, I. S., Bragina, G. O., Wärnå, J., Gerasimov, E. Y., Bukhtiyarov, V. I., … Murzin, D. Y. (2019). Particle size effect in liquid-phase hydrogenation of phenylacetylene over Pd catalysts: Experimental data and theoretical analysis. Chemical Engineering Journal, 358, 520-530. doi:10.1016/j.cej.2018.10.016

Huang, T. S., Wang, Y. H., Jiang, J. Y., & Jin, Z. L. (2008). PEG-stabilized palladium nanoparticles: An efficient and recyclable catalyst for the selective hydrogenation of 1,5-cyclooctadiene in thermoregulated PEG biphase system. Chinese Chemical Letters, 19(1), 102-104. doi:10.1016/j.cclet.2007.10.042

Yuan, T., Gong, H., Kailasam, K., Zhao, Y., Thomas, A., & Zhu, J. (2015). Controlling hydrogenation selectivity with Pd catalysts on carbon nitrides functionalized silica. Journal of Catalysis, 326, 38-42. doi:10.1016/j.jcat.2015.03.007

García-Ortiz, A., Vidal, J. D., Climent, M. J., Concepción, P., Corma, A., & Iborra, S. (2019). Chemicals from Biomass: Selective Synthesis of N-Substituted Furfuryl Amines by the One-Pot Direct Reductive Amination of Furanic Aldehydes. ACS Sustainable Chemistry & Engineering, 7(6), 6243-6250. doi:10.1021/acssuschemeng.8b06631

Vidal, J. D., Climent, M. J., Concepcion, P., Corma, A., Iborra, S., & Sabater, M. J. (2015). Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 5(10), 5812-5821. doi:10.1021/acscatal.5b01113

T. Schiffer, G. Oenbrink, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-Interscience, New York, 2009, 11, 37–40.

Concepción, P., García, S., Hernández-Garrido, J. C., Calvino, J. J., & Corma, A. (2016). A promoting effect of dilution of Pd sites due to gold surface segregation under reaction conditions on supported Pd–Au catalysts for the selective hydrogenation of 1,5-cyclooctadiene. Catalysis Today, 259, 213-221. doi:10.1016/j.cattod.2015.07.022

Mubarak, A. T., Alhanash, A. M., Benaissa, M., Hegazy, H. H., & Hamdy, M. S. (2019). In-situ activation of Pd-TUD-1 during the selective reduction of 1,5-cyclooctadiene. Microporous and Mesoporous Materials, 278, 225-231. doi:10.1016/j.micromeso.2018.11.035

Zhang, X., Llabrés i Xamena, F. X., & Corma, A. (2009). Gold(III) – metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. Journal of Catalysis, 265(2), 155-160. doi:10.1016/j.jcat.2009.04.021

Chatterjee, M., Ishizaka, T., & Kawanami, H. (2016). Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: an environmentally friendly approach. Green Chemistry, 18(2), 487-496. doi:10.1039/c5gc01352f

Komanoya, T., Kinemura, T., Kita, Y., Kamata, K., & Hara, M. (2017). Electronic Effect of Ruthenium Nanoparticles on Efficient Reductive Amination of Carbonyl Compounds. Journal of the American Chemical Society, 139(33), 11493-11499. doi:10.1021/jacs.7b04481

Bagal, D. B., Watile, R. A., Khedkar, M. V., Dhake, K. P., & Bhanage, B. M. (2012). PS-Pd–NHC: an efficient and heterogeneous recyclable catalyst for direct reductive amination of carbonyl compounds with primary/secondary amines in aqueous medium. Catal. Sci. Technol., 2(2), 354-358. doi:10.1039/c1cy00392e

Bugaev, A. L., Usoltsev, O. A., Lazzarini, A., Lomachenko, K. A., Guda, A. A., Pellegrini, R., … Lamberti, C. (2018). Time-resolved operando studies of carbon supported Pd nanoparticles under hydrogenation reactions by X-ray diffraction and absorption. Faraday Discussions, 208, 187-205. doi:10.1039/c7fd00211d

Stytsenko, V. D., & Mel’nikov, D. P. (2016). Selective hydrogenation of dienic and acetylenic compounds on metal-containing catalysts. Russian Journal of Physical Chemistry A, 90(5), 932-942. doi:10.1134/s0036024416040294

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record