Mostrar el registro sencillo del ítem
dc.contributor.author | Garcia-Ortiz, Andrea | es_ES |
dc.contributor.author | Vidal, Juan D. | es_ES |
dc.contributor.author | Iborra Chornet, Sara | es_ES |
dc.contributor.author | Climent Olmedo, María José | es_ES |
dc.contributor.author | Cored-Bandrés, Jorge | es_ES |
dc.contributor.author | Ruano-Sánchez, Daniel | es_ES |
dc.contributor.author | Pérez-Dieste, Virginia | es_ES |
dc.contributor.author | Concepción Heydorn, Patricia | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2021-04-01T03:31:30Z | |
dc.date.available | 2021-04-01T03:31:30Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 0021-9517 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/164817 | |
dc.description.abstract | [EN] We present a highly selective and active Pd carbon catalyst prepared by an easy hydrothermal synthesis method. This synthetic procedure allows the stabilization under mild conditions of interstitial carbon atoms on the surface of a Pd-0 carbon catalyst. The so formed Pd carbide phase appears on the upper surface layers of the Pd carbon catalyst, as demonstrated by X-ray photoelectron depth profile analysis using variable synchrotron X-ray energies. The presence of carbon in the palladium carbide species modifies the electronic state of surface Pd atoms, resulting in more electron positive Pd species (Pdd+). This influences the adsorption of reactants and reaction intermediates during the hydrogenation of alkynes, dienes and imines, resulting in high selectivities at practically 100% conversion. (C) 2020 Elsevier Inc. All rights reserved. | es_ES |
dc.description.sponsorship | The research leading to these results has received funding from the Spanish Ministry of Science, Innovation and Universities through "Severo Ochoa"Excellence Programme (SEV-2016-0683) and the PGC2018-097277-B-100 project. The authors also thank the Microscopy Service of UPV for kind help on measurements. A. Garcia-Ortiz thanks "Severo Ochoa" Programme (SEV-2016-0683) for a predoctoral fellowship. J. Cored thanks the Spanish Government (MINECO) for a "Severo Ochoa"grant (BES-2015-075748). D. R. thanks European Research Council project SYNCATMATCH (671093). The NAP-XPS experiments were performed at the NAPP branch of the CIRCE beamline at the ALBA Synchrotron with the collaboration of ALBA staff. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Catalysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Palladium carbide | es_ES |
dc.subject | Selective hydrogenation | es_ES |
dc.subject | Reductive amination | es_ES |
dc.subject | Synchrotron XPS | es_ES |
dc.subject | Hydrothermal synthesis | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Synthesis of a hybrid Pd-0/Pd-carbide/carbon catalyst material with high for reactions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jcat.2020.06.036 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2015-075748/ES/BES-2015-075748/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Garcia-Ortiz, A.; Vidal, JD.; Iborra Chornet, S.; Climent Olmedo, MJ.; Cored-Bandrés, J.; Ruano-Sánchez, D.; Pérez-Dieste, V.... (2020). Synthesis of a hybrid Pd-0/Pd-carbide/carbon catalyst material with high for reactions. Journal of Catalysis. 389:706-713. https://doi.org/10.1016/j.jcat.2020.06.036 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jcat.2020.06.036 | es_ES |
dc.description.upvformatpinicio | 706 | es_ES |
dc.description.upvformatpfin | 713 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 389 | es_ES |
dc.relation.pasarela | S\418287 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Borodziński, A., & Bond, G. C. (2008). Selective Hydrogenation of Ethyne in Ethene‐Rich Streams on Palladium Catalysts, Part 2: Steady‐State Kinetics and Effects of Palladium Particle Size, Carbon Monoxide, and Promoters. Catalysis Reviews, 50(3), 379-469. doi:10.1080/01614940802142102 | es_ES |
dc.description.references | Molnár, Á., Sárkány, A., & Varga, M. (2001). Hydrogenation of carbon–carbon multiple bonds: chemo-, regio- and stereo-selectivity. Journal of Molecular Catalysis A: Chemical, 173(1-2), 185-221. doi:10.1016/s1381-1169(01)00150-9 | es_ES |
dc.description.references | Jones, W., Wells, P. P., Gibson, E. K., Chutia, A., Silverwood, I. P., Catlow, C. R. A., & Bowker, M. (2019). Carbidisation of Pd Nanoparticles by Ethene Decomposition with Methane Production. ChemCatChem, 11(17), 4334-4339. doi:10.1002/cctc.201900795 | es_ES |
dc.description.references | Bugaev, A. L., Guda, A. A., Pankin, I. A., Groppo, E., Pellegrini, R., Longo, A., … Lamberti, C. (2019). The role of palladium carbides in the catalytic hydrogenation of ethylene over supported palladium nanoparticles. Catalysis Today, 336, 40-44. doi:10.1016/j.cattod.2019.02.068 | es_ES |
dc.description.references | Bugaev, A. L., Guda, A. A., Lazzarini, A., Lomachenko, K. A., Groppo, E., Pellegrini, R., … Lamberti, C. (2017). In situ formation of hydrides and carbides in palladium catalyst: When XANES is better than EXAFS and XRD. Catalysis Today, 283, 119-126. doi:10.1016/j.cattod.2016.02.065 | es_ES |
dc.description.references | Teschner, D., Borsodi, J., Wootsch, A., Révay, Z., Hävecker, M., Knop-Gericke, A., … Schlögl, R. (2008). The Roles of Subsurface Carbon and Hydrogen in Palladium-Catalyzed Alkyne Hydrogenation. Science, 320(5872), 86-89. doi:10.1126/science.1155200 | es_ES |
dc.description.references | Michaelides, A., Hu, P., & Alavi, A. (1999). Physical origin of the high reactivity of subsurface hydrogen in catalytic hydrogenation. The Journal of Chemical Physics, 111(4), 1343-1345. doi:10.1063/1.479392 | es_ES |
dc.description.references | Khan, N. A., Shaikhutdinov, S., & Freund, H.-J. (2006). Acetylene and Ethylene Hydrogenation on Alumina Supported Pd-Ag Model Catalysts. Catalysis Letters, 108(3-4), 159-164. doi:10.1007/s10562-006-0041-y | es_ES |
dc.description.references | Teschner, D., Révay, Z., Borsodi, J., Hävecker, M., Knop‐Gericke, A., Schlögl, R., … Sautet, P. (2008). Understanding Palladium Hydrogenation Catalysts: When the Nature of the Reactive Molecule Controls the Nature of the Catalyst Active Phase. Angewandte Chemie, 120(48), 9414-9418. doi:10.1002/ange.200802134 | es_ES |
dc.description.references | Teschner, D., Borsodi, J., Kis, Z., Szentmiklósi, L., Révay, Z., Knop-Gericke, A., … Sautet, P. (2010). Role of Hydrogen Species in Palladium-Catalyzed Alkyne Hydrogenation. The Journal of Physical Chemistry C, 114(5), 2293-2299. doi:10.1021/jp9103799 | es_ES |
dc.description.references | Torres, D., Cinquini, F., & Sautet, P. (2013). Pressure and Temperature Effects on the Formation of a Pd/C Surface Carbide: Insights into the Role of Pd/C as a Selective Catalytic State for the Partial Hydrogenation of Acetylene. The Journal of Physical Chemistry C, 117(21), 11059-11065. doi:10.1021/jp400059m | es_ES |
dc.description.references | Singh, N., Nguyen, M.-T., Cantu, D. C., Mehdi, B. L., Browning, N. D., Fulton, J. L., … Lercher, J. A. (2018). Carbon-supported Pt during aqueous phenol hydrogenation with and without applied electrical potential: X-ray absorption and theoretical studies of structure and adsorbates. Journal of Catalysis, 368, 8-19. doi:10.1016/j.jcat.2018.09.021 | es_ES |
dc.description.references | Huang, F., Jia, Z., Diao, J., Yuan, H., Su, D., & Liu, H. (2019). Palladium nanoclusters immobilized on defective nanodiamond-graphene core-shell supports for semihydrogenation of phenylacetylene. Journal of Energy Chemistry, 33, 31-36. doi:10.1016/j.jechem.2018.08.006 | es_ES |
dc.description.references | Okitsu, K., Mizukoshi, Y., Bandow, H., Yamamoto, T. A., Nagata, Y., & Maeda, Y. (1997). Synthesis of Palladium Nanoparticles with Interstitial Carbon by Sonochemical Reduction of Tetrachloropalladate(II) in Aqueous Solution. The Journal of Physical Chemistry B, 101(28), 5470-5472. doi:10.1021/jp970415f | es_ES |
dc.description.references | Guo, R., Chen, Q., Li, X., Liu, Y., Wang, C., Bi, W., … Jin, M. (2019). PdCx nanocrystals with tunable compositions for alkyne semihydrogenation. Journal of Materials Chemistry A, 7(9), 4714-4720. doi:10.1039/c8ta12002a | es_ES |
dc.description.references | Beltzung, A., Newton, M. A., Nachtegaal, M., Wu, H., Storti, G., & Morbidelli, M. (2018). Research Update: Distribution and stabilization of Pd catalysts in porous carbon-based supports by aggregation of pre-doped colloidal particles. APL Materials, 6(10), 100704. doi:10.1063/1.5046552 | es_ES |
dc.description.references | Sevilla, M., Fuertes, A. B., & Mokaya, R. (2011). High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy & Environmental Science, 4(4), 1400. doi:10.1039/c0ee00347f | es_ES |
dc.description.references | Liu, L., Gao, F., Concepción, P., & Corma, A. (2017). A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. Journal of Catalysis, 350, 218-225. doi:10.1016/j.jcat.2017.03.014 | es_ES |
dc.description.references | Makowski, P., Demir Cakan, R., Antonietti, M., Goettmann, F., & Titirici, M.-M. (2008). Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon. Chemical Communications, (8), 999. doi:10.1039/b717928f | es_ES |
dc.description.references | Liu, L., Puga, A. V., Cored, J., Concepción, P., Pérez-Dieste, V., García, H., & Corma, A. (2018). Sunlight-assisted hydrogenation of CO 2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@C nanocomposites. Applied Catalysis B: Environmental, 235, 186-196. doi:10.1016/j.apcatb.2018.04.060 | es_ES |
dc.description.references | Liu, L., Concepción, P., & Corma, A. (2016). Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. Journal of Catalysis, 340, 1-9. doi:10.1016/j.jcat.2016.04.006 | es_ES |
dc.description.references | Cored, J., García-Ortiz, A., Iborra, S., Climent, M. J., Liu, L., Chuang, C.-H., … Corma, A. (2019). Hydrothermal Synthesis of Ruthenium Nanoparticles with a Metallic Core and a Ruthenium Carbide Shell for Low-Temperature Activation of CO2 to Methane. Journal of the American Chemical Society, 141(49), 19304-19311. doi:10.1021/jacs.9b07088 | es_ES |
dc.description.references | C.J. Powell, A.J., NIST Electron Inelastic Mean Free Path Database, version 1.1. National Institute of Standards and Technology: Gaithersburg, MD, 2002. | es_ES |
dc.description.references | Sharma, H., Bhardwaj, M., Kour, M., & Paul, S. (2017). Highly efficient magnetic Pd(0) nanoparticles stabilized by amine functionalized starch for organic transformations under mild conditions. Molecular Catalysis, 435, 58-68. doi:10.1016/j.mcat.2017.03.019 | es_ES |
dc.description.references | Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., & Pöschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43(8), 1731-1742. doi:10.1016/j.carbon.2005.02.018 | es_ES |
dc.description.references | Baylet, A., Marécot, P., Duprez, D., Castellazzi, P., Groppi, G., & Forzatti, P. (2011). In situ Raman and in situ XRD analysis of PdO reduction and Pd° oxidation supported on γ-Al2O3 catalyst under different atmospheres. Physical Chemistry Chemical Physics, 13(10), 4607. doi:10.1039/c0cp01331e | es_ES |
dc.description.references | C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J.R.Jr. Rumble, NIST Standart Reference Database 20, Version 3.4 can be found under http://srdata.nist.gov/xps/, 2003. | es_ES |
dc.description.references | Tian, H., Huang, F., Zhu, Y., Liu, S., Han, Y., Jaroniec, M., … Liu, J. (2018). The Development of Yolk–Shell‐Structured Pd&ZnO@Carbon Submicroreactors with High Selectivity and Stability. Advanced Functional Materials, 28(32), 1801737. doi:10.1002/adfm.201801737 | es_ES |
dc.description.references | Peng, L., Zhang, J., Yang, S., Han, B., Sang, X., Liu, C., & Yang, G. (2015). The ionic liquid microphase enhances the catalytic activity of Pd nanoparticles supported by a metal–organic framework. Green Chem., 17(8), 4178-4182. doi:10.1039/c5gc01333j | es_ES |
dc.description.references | Boucher, M. B., Zugic, B., Cladaras, G., Kammert, J., Marcinkowski, M. D., Lawton, T. J., … Flytzani-Stephanopoulos, M. (2013). Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Physical Chemistry Chemical Physics, 15(29), 12187. doi:10.1039/c3cp51538a | es_ES |
dc.description.references | Armbrüster, M., Kovnir, K., Behrens, M., Teschner, D., Grin, Y., & Schlögl, R. (2010). Pd−Ga Intermetallic Compounds as Highly Selective Semihydrogenation Catalysts. Journal of the American Chemical Society, 132(42), 14745-14747. doi:10.1021/ja106568t | es_ES |
dc.description.references | Panpranot, J., Phandinthong, K., Sirikajorn, T., Arai, M., & Praserthdam, P. (2007). Impact of palladium silicide formation on the catalytic properties of Pd/SiO2 catalysts in liquid-phase semihydrogenation of phenylacetylene. Journal of Molecular Catalysis A: Chemical, 261(1), 29-35. doi:10.1016/j.molcata.2006.07.053 | es_ES |
dc.description.references | Hu, J., Zhou, Z., Zhang, R., Li, L., & Cheng, Z. (2014). Selective hydrogenation of phenylacetylene over a nano-Pd/α-Al2O3 catalyst. Journal of Molecular Catalysis A: Chemical, 381, 61-69. doi:10.1016/j.molcata.2013.10.008 | es_ES |
dc.description.references | Markov, P. V., Mashkovsky, I. S., Bragina, G. O., Wärnå, J., Gerasimov, E. Y., Bukhtiyarov, V. I., … Murzin, D. Y. (2019). Particle size effect in liquid-phase hydrogenation of phenylacetylene over Pd catalysts: Experimental data and theoretical analysis. Chemical Engineering Journal, 358, 520-530. doi:10.1016/j.cej.2018.10.016 | es_ES |
dc.description.references | Huang, T. S., Wang, Y. H., Jiang, J. Y., & Jin, Z. L. (2008). PEG-stabilized palladium nanoparticles: An efficient and recyclable catalyst for the selective hydrogenation of 1,5-cyclooctadiene in thermoregulated PEG biphase system. Chinese Chemical Letters, 19(1), 102-104. doi:10.1016/j.cclet.2007.10.042 | es_ES |
dc.description.references | Yuan, T., Gong, H., Kailasam, K., Zhao, Y., Thomas, A., & Zhu, J. (2015). Controlling hydrogenation selectivity with Pd catalysts on carbon nitrides functionalized silica. Journal of Catalysis, 326, 38-42. doi:10.1016/j.jcat.2015.03.007 | es_ES |
dc.description.references | García-Ortiz, A., Vidal, J. D., Climent, M. J., Concepción, P., Corma, A., & Iborra, S. (2019). Chemicals from Biomass: Selective Synthesis of N-Substituted Furfuryl Amines by the One-Pot Direct Reductive Amination of Furanic Aldehydes. ACS Sustainable Chemistry & Engineering, 7(6), 6243-6250. doi:10.1021/acssuschemeng.8b06631 | es_ES |
dc.description.references | Vidal, J. D., Climent, M. J., Concepcion, P., Corma, A., Iborra, S., & Sabater, M. J. (2015). Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 5(10), 5812-5821. doi:10.1021/acscatal.5b01113 | es_ES |
dc.description.references | T. Schiffer, G. Oenbrink, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-Interscience, New York, 2009, 11, 37–40. | es_ES |
dc.description.references | Concepción, P., García, S., Hernández-Garrido, J. C., Calvino, J. J., & Corma, A. (2016). A promoting effect of dilution of Pd sites due to gold surface segregation under reaction conditions on supported Pd–Au catalysts for the selective hydrogenation of 1,5-cyclooctadiene. Catalysis Today, 259, 213-221. doi:10.1016/j.cattod.2015.07.022 | es_ES |
dc.description.references | Mubarak, A. T., Alhanash, A. M., Benaissa, M., Hegazy, H. H., & Hamdy, M. S. (2019). In-situ activation of Pd-TUD-1 during the selective reduction of 1,5-cyclooctadiene. Microporous and Mesoporous Materials, 278, 225-231. doi:10.1016/j.micromeso.2018.11.035 | es_ES |
dc.description.references | Zhang, X., Llabrés i Xamena, F. X., & Corma, A. (2009). Gold(III) – metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. Journal of Catalysis, 265(2), 155-160. doi:10.1016/j.jcat.2009.04.021 | es_ES |
dc.description.references | Chatterjee, M., Ishizaka, T., & Kawanami, H. (2016). Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: an environmentally friendly approach. Green Chemistry, 18(2), 487-496. doi:10.1039/c5gc01352f | es_ES |
dc.description.references | Komanoya, T., Kinemura, T., Kita, Y., Kamata, K., & Hara, M. (2017). Electronic Effect of Ruthenium Nanoparticles on Efficient Reductive Amination of Carbonyl Compounds. Journal of the American Chemical Society, 139(33), 11493-11499. doi:10.1021/jacs.7b04481 | es_ES |
dc.description.references | Bagal, D. B., Watile, R. A., Khedkar, M. V., Dhake, K. P., & Bhanage, B. M. (2012). PS-Pd–NHC: an efficient and heterogeneous recyclable catalyst for direct reductive amination of carbonyl compounds with primary/secondary amines in aqueous medium. Catal. Sci. Technol., 2(2), 354-358. doi:10.1039/c1cy00392e | es_ES |
dc.description.references | Bugaev, A. L., Usoltsev, O. A., Lazzarini, A., Lomachenko, K. A., Guda, A. A., Pellegrini, R., … Lamberti, C. (2018). Time-resolved operando studies of carbon supported Pd nanoparticles under hydrogenation reactions by X-ray diffraction and absorption. Faraday Discussions, 208, 187-205. doi:10.1039/c7fd00211d | es_ES |
dc.description.references | Stytsenko, V. D., & Mel’nikov, D. P. (2016). Selective hydrogenation of dienic and acetylenic compounds on metal-containing catalysts. Russian Journal of Physical Chemistry A, 90(5), 932-942. doi:10.1134/s0036024416040294 | es_ES |