- -

A surrogate similarity measure for the mean-variance frontier optimization problem under bound and cardinality constraints

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A surrogate similarity measure for the mean-variance frontier optimization problem under bound and cardinality constraints

Show full item record

Guijarro, F.; Tsinaslanidis, PE. (2021). A surrogate similarity measure for the mean-variance frontier optimization problem under bound and cardinality constraints. Journal of the Operational Research Society. 72(3):564-579. https://doi.org/10.1080/01605682.2019.1657367

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164819

Files in this item

Item Metadata

Title: A surrogate similarity measure for the mean-variance frontier optimization problem under bound and cardinality constraints
Author: Guijarro, Francisco Tsinaslanidis, Prodromos E.
UPV Unit: Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials
Issued date:
Abstract:
[EN] This article deals with the mean-variance optimisation frontier problem when realistic constraints are considered. Our proposed methodology hybridises a heuristic algorithm with an exact solution approach. A genetic ...[+]
Subjects: Portfolio optimisation , Cardinality constraint , Bound constraint , Genetic algorithm
Copyrigths: Reserva de todos los derechos
Source:
Journal of the Operational Research Society. (issn: 0160-5682 )
DOI: 10.1080/01605682.2019.1657367
Publisher:
Nature Publishing Group - Macmillan Publishers
Publisher version: https://doi.org/10.1080/01605682.2019.1657367
Type: Artículo

References

Beasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society, 41(11), 1069-1072. doi:10.1057/jors.1990.166

Bruni, R., Cesarone, F., Scozzari, A., & Tardella, F. (2014). A linear risk-return model for enhanced indexation in portfolio optimization. OR Spectrum, 37(3), 735-759. doi:10.1007/s00291-014-0383-6

Bruni, R., Cesarone, F., Scozzari, A., & Tardella, F. (2016). Real-world datasets for portfolio selection and solutions of some stochastic dominance portfolio models. Data in Brief, 8, 858-862. doi:10.1016/j.dib.2016.06.031 [+]
Beasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society, 41(11), 1069-1072. doi:10.1057/jors.1990.166

Bruni, R., Cesarone, F., Scozzari, A., & Tardella, F. (2014). A linear risk-return model for enhanced indexation in portfolio optimization. OR Spectrum, 37(3), 735-759. doi:10.1007/s00291-014-0383-6

Bruni, R., Cesarone, F., Scozzari, A., & Tardella, F. (2016). Real-world datasets for portfolio selection and solutions of some stochastic dominance portfolio models. Data in Brief, 8, 858-862. doi:10.1016/j.dib.2016.06.031

Cesarone, F., Scozzari, A., & Tardella, F. (2012). A new method for mean-variance portfolio optimization with cardinality constraints. Annals of Operations Research, 205(1), 213-234. doi:10.1007/s10479-012-1165-7

Chang, T.-J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research, 27(13), 1271-1302. doi:10.1016/s0305-0548(99)00074-x

Chang, T.-J., Yang, S.-C., & Chang, K.-J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems with Applications, 36(7), 10529-10537. doi:10.1016/j.eswa.2009.02.062

Cura, T. (2009). Particle swarm optimization approach to portfolio optimization. Nonlinear Analysis: Real World Applications, 10(4), 2396-2406. doi:10.1016/j.nonrwa.2008.04.023

Deng, G.-F., Lin, W.-T., & Lo, C.-C. (2012). Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. Expert Systems with Applications, 39(4), 4558-4566. doi:10.1016/j.eswa.2011.09.129

Guijarro, F. (2018). A similarity measure for the cardinality constrained frontier in the mean–variance optimization model. Journal of the Operational Research Society, 69(6), 928-945. doi:10.1057/s41274-017-0276-6

Kalayci, C. B., Ertenlice, O., Akyer, H., & Aygoren, H. (2017). An artificial bee colony algorithm with feasibility enforcement and infeasibility toleration procedures for cardinality constrained portfolio optimization. Expert Systems with Applications, 85, 61-75. doi:10.1016/j.eswa.2017.05.018

Li, D., & Ng, W.-L. (2000). Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation. Mathematical Finance, 10(3), 387-406. doi:10.1111/1467-9965.00100

Liagkouras, K., & Metaxiotis, K. (2014). A new Probe Guided Mutation operator and its application for solving the cardinality constrained portfolio optimization problem. Expert Systems with Applications, 41(14), 6274-6290. doi:10.1016/j.eswa.2014.03.051

Lwin, K., & Qu, R. (2013). A hybrid algorithm for constrained portfolio selection problems. Applied Intelligence, 39(2), 251-266. doi:10.1007/s10489-012-0411-7

Markowitz, H. (1952). PORTFOLIO SELECTION*. The Journal of Finance, 7(1), 77-91. doi:10.1111/j.1540-6261.1952.tb01525.x

Meghwani, S. S., & Thakur, M. (2017). Multi-criteria algorithms for portfolio optimization under practical constraints. Swarm and Evolutionary Computation, 37, 104-125. doi:10.1016/j.swevo.2017.06.005

Moscato, P., & Cotta, C. (s. f.). A Gentle Introduction to Memetic Algorithms. International Series in Operations Research & Management Science, 105-144. doi:10.1007/0-306-48056-5_5

Peterson, B. & Carl, P. (2018). Performance analytics: Econometric tools for performance and risk analysis. Retrieved from https://CRAN.R-project.org/package=PerformanceAnalytics

Ruiz-Torrubiano, R., & Suárez, A. (2008). A hybrid optimization approach to index tracking. Annals of Operations Research, 166(1), 57-71. doi:10.1007/s10479-008-0404-4

Ruiz-Torrubiano, R., & Suárez, A. (2015). A memetic algorithm for cardinality-constrained portfolio optimization with transaction costs. Applied Soft Computing, 36, 125-142. doi:10.1016/j.asoc.2015.06.053

Sadjadi, S. J., Gharakhani, M., & Safari, E. (2012). Robust optimization framework for cardinality constrained portfolio problem. Applied Soft Computing, 12(1), 91-99. doi:10.1016/j.asoc.2011.09.006

Bavarsad Salehpoor, I., & Molla-Alizadeh-Zavardehi, S. (2019). A constrained portfolio selection model at considering risk-adjusted measure by using hybrid meta-heuristic algorithms. Applied Soft Computing, 75, 233-253. doi:10.1016/j.asoc.2018.11.011

Shaw, D. X., Liu, S., & Kopman, L. (2008). Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optimization Methods and Software, 23(3), 411-420. doi:10.1080/10556780701722542

Soleimani, H., Golmakani, H. R., & Salimi, M. H. (2009). Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Systems with Applications, 36(3), 5058-5063. doi:10.1016/j.eswa.2008.06.007

Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for the cardinality constrained efficient frontier. European Journal of Operational Research, 213(3), 538-550. doi:10.1016/j.ejor.2011.03.030

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record