Mostrar el registro sencillo del ítem
dc.contributor.author | Guijarro, Francisco | es_ES |
dc.contributor.author | Tsinaslanidis, Prodromos E. | es_ES |
dc.date.accessioned | 2021-04-01T03:31:36Z | |
dc.date.available | 2021-04-01T03:31:36Z | |
dc.date.issued | 2021-03 | es_ES |
dc.identifier.issn | 0160-5682 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/164819 | |
dc.description.abstract | [EN] This article deals with the mean-variance optimisation frontier problem when realistic constraints are considered. Our proposed methodology hybridises a heuristic algorithm with an exact solution approach. A genetic algorithm is applied for the identification of the assets in the portfolio, whilst the asset weights in the portfolios are obtained by a quadratic programming model. The proposed algorithmic framework produces a constrained frontier that actually fulfils the bound and cardinality constraints, unlike other proposals where the frontier is composed of several subfrontiers, each one considering the cardinality constraint but with different assets in each sub-frontier, thus violating the cardinality constraint. This brings us to propose a surrogate similarity measure for the optimisation of the constrained frontier, which differs from a previous proposal where no bound constraints were considered. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group - Macmillan Publishers | es_ES |
dc.relation.ispartof | Journal of the Operational Research Society | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Portfolio optimisation | es_ES |
dc.subject | Cardinality constraint | es_ES |
dc.subject | Bound constraint | es_ES |
dc.subject | Genetic algorithm | es_ES |
dc.subject.classification | ECONOMIA FINANCIERA Y CONTABILIDAD | es_ES |
dc.title | A surrogate similarity measure for the mean-variance frontier optimization problem under bound and cardinality constraints | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/01605682.2019.1657367 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials | es_ES |
dc.description.bibliographicCitation | Guijarro, F.; Tsinaslanidis, PE. (2021). A surrogate similarity measure for the mean-variance frontier optimization problem under bound and cardinality constraints. Journal of the Operational Research Society. 72(3):564-579. https://doi.org/10.1080/01605682.2019.1657367 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/01605682.2019.1657367 | es_ES |
dc.description.upvformatpinicio | 564 | es_ES |
dc.description.upvformatpfin | 579 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 72 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\392223 | es_ES |
dc.description.references | Beasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society, 41(11), 1069-1072. doi:10.1057/jors.1990.166 | es_ES |
dc.description.references | Bruni, R., Cesarone, F., Scozzari, A., & Tardella, F. (2014). A linear risk-return model for enhanced indexation in portfolio optimization. OR Spectrum, 37(3), 735-759. doi:10.1007/s00291-014-0383-6 | es_ES |
dc.description.references | Bruni, R., Cesarone, F., Scozzari, A., & Tardella, F. (2016). Real-world datasets for portfolio selection and solutions of some stochastic dominance portfolio models. Data in Brief, 8, 858-862. doi:10.1016/j.dib.2016.06.031 | es_ES |
dc.description.references | Cesarone, F., Scozzari, A., & Tardella, F. (2012). A new method for mean-variance portfolio optimization with cardinality constraints. Annals of Operations Research, 205(1), 213-234. doi:10.1007/s10479-012-1165-7 | es_ES |
dc.description.references | Chang, T.-J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research, 27(13), 1271-1302. doi:10.1016/s0305-0548(99)00074-x | es_ES |
dc.description.references | Chang, T.-J., Yang, S.-C., & Chang, K.-J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems with Applications, 36(7), 10529-10537. doi:10.1016/j.eswa.2009.02.062 | es_ES |
dc.description.references | Cura, T. (2009). Particle swarm optimization approach to portfolio optimization. Nonlinear Analysis: Real World Applications, 10(4), 2396-2406. doi:10.1016/j.nonrwa.2008.04.023 | es_ES |
dc.description.references | Deng, G.-F., Lin, W.-T., & Lo, C.-C. (2012). Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. Expert Systems with Applications, 39(4), 4558-4566. doi:10.1016/j.eswa.2011.09.129 | es_ES |
dc.description.references | Guijarro, F. (2018). A similarity measure for the cardinality constrained frontier in the mean–variance optimization model. Journal of the Operational Research Society, 69(6), 928-945. doi:10.1057/s41274-017-0276-6 | es_ES |
dc.description.references | Kalayci, C. B., Ertenlice, O., Akyer, H., & Aygoren, H. (2017). An artificial bee colony algorithm with feasibility enforcement and infeasibility toleration procedures for cardinality constrained portfolio optimization. Expert Systems with Applications, 85, 61-75. doi:10.1016/j.eswa.2017.05.018 | es_ES |
dc.description.references | Li, D., & Ng, W.-L. (2000). Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation. Mathematical Finance, 10(3), 387-406. doi:10.1111/1467-9965.00100 | es_ES |
dc.description.references | Liagkouras, K., & Metaxiotis, K. (2014). A new Probe Guided Mutation operator and its application for solving the cardinality constrained portfolio optimization problem. Expert Systems with Applications, 41(14), 6274-6290. doi:10.1016/j.eswa.2014.03.051 | es_ES |
dc.description.references | Lwin, K., & Qu, R. (2013). A hybrid algorithm for constrained portfolio selection problems. Applied Intelligence, 39(2), 251-266. doi:10.1007/s10489-012-0411-7 | es_ES |
dc.description.references | Markowitz, H. (1952). PORTFOLIO SELECTION*. The Journal of Finance, 7(1), 77-91. doi:10.1111/j.1540-6261.1952.tb01525.x | es_ES |
dc.description.references | Meghwani, S. S., & Thakur, M. (2017). Multi-criteria algorithms for portfolio optimization under practical constraints. Swarm and Evolutionary Computation, 37, 104-125. doi:10.1016/j.swevo.2017.06.005 | es_ES |
dc.description.references | Moscato, P., & Cotta, C. (s. f.). A Gentle Introduction to Memetic Algorithms. International Series in Operations Research & Management Science, 105-144. doi:10.1007/0-306-48056-5_5 | es_ES |
dc.description.references | Peterson, B. & Carl, P. (2018). Performance analytics: Econometric tools for performance and risk analysis. Retrieved from https://CRAN.R-project.org/package=PerformanceAnalytics | es_ES |
dc.description.references | Ruiz-Torrubiano, R., & Suárez, A. (2008). A hybrid optimization approach to index tracking. Annals of Operations Research, 166(1), 57-71. doi:10.1007/s10479-008-0404-4 | es_ES |
dc.description.references | Ruiz-Torrubiano, R., & Suárez, A. (2015). A memetic algorithm for cardinality-constrained portfolio optimization with transaction costs. Applied Soft Computing, 36, 125-142. doi:10.1016/j.asoc.2015.06.053 | es_ES |
dc.description.references | Sadjadi, S. J., Gharakhani, M., & Safari, E. (2012). Robust optimization framework for cardinality constrained portfolio problem. Applied Soft Computing, 12(1), 91-99. doi:10.1016/j.asoc.2011.09.006 | es_ES |
dc.description.references | Bavarsad Salehpoor, I., & Molla-Alizadeh-Zavardehi, S. (2019). A constrained portfolio selection model at considering risk-adjusted measure by using hybrid meta-heuristic algorithms. Applied Soft Computing, 75, 233-253. doi:10.1016/j.asoc.2018.11.011 | es_ES |
dc.description.references | Shaw, D. X., Liu, S., & Kopman, L. (2008). Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optimization Methods and Software, 23(3), 411-420. doi:10.1080/10556780701722542 | es_ES |
dc.description.references | Soleimani, H., Golmakani, H. R., & Salimi, M. H. (2009). Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Systems with Applications, 36(3), 5058-5063. doi:10.1016/j.eswa.2008.06.007 | es_ES |
dc.description.references | Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for the cardinality constrained efficient frontier. European Journal of Operational Research, 213(3), 538-550. doi:10.1016/j.ejor.2011.03.030 | es_ES |