- -

A surrogate similarity measure for the mean-variance frontier optimization problem under bound and cardinality constraints

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A surrogate similarity measure for the mean-variance frontier optimization problem under bound and cardinality constraints

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guijarro, Francisco es_ES
dc.contributor.author Tsinaslanidis, Prodromos E. es_ES
dc.date.accessioned 2021-04-01T03:31:36Z
dc.date.available 2021-04-01T03:31:36Z
dc.date.issued 2021-03 es_ES
dc.identifier.issn 0160-5682 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164819
dc.description.abstract [EN] This article deals with the mean-variance optimisation frontier problem when realistic constraints are considered. Our proposed methodology hybridises a heuristic algorithm with an exact solution approach. A genetic algorithm is applied for the identification of the assets in the portfolio, whilst the asset weights in the portfolios are obtained by a quadratic programming model. The proposed algorithmic framework produces a constrained frontier that actually fulfils the bound and cardinality constraints, unlike other proposals where the frontier is composed of several subfrontiers, each one considering the cardinality constraint but with different assets in each sub-frontier, thus violating the cardinality constraint. This brings us to propose a surrogate similarity measure for the optimisation of the constrained frontier, which differs from a previous proposal where no bound constraints were considered. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group - Macmillan Publishers es_ES
dc.relation.ispartof Journal of the Operational Research Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Portfolio optimisation es_ES
dc.subject Cardinality constraint es_ES
dc.subject Bound constraint es_ES
dc.subject Genetic algorithm es_ES
dc.subject.classification ECONOMIA FINANCIERA Y CONTABILIDAD es_ES
dc.title A surrogate similarity measure for the mean-variance frontier optimization problem under bound and cardinality constraints es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/01605682.2019.1657367 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials es_ES
dc.description.bibliographicCitation Guijarro, F.; Tsinaslanidis, PE. (2021). A surrogate similarity measure for the mean-variance frontier optimization problem under bound and cardinality constraints. Journal of the Operational Research Society. 72(3):564-579. https://doi.org/10.1080/01605682.2019.1657367 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/01605682.2019.1657367 es_ES
dc.description.upvformatpinicio 564 es_ES
dc.description.upvformatpfin 579 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 72 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\392223 es_ES
dc.description.references Beasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society, 41(11), 1069-1072. doi:10.1057/jors.1990.166 es_ES
dc.description.references Bruni, R., Cesarone, F., Scozzari, A., & Tardella, F. (2014). A linear risk-return model for enhanced indexation in portfolio optimization. OR Spectrum, 37(3), 735-759. doi:10.1007/s00291-014-0383-6 es_ES
dc.description.references Bruni, R., Cesarone, F., Scozzari, A., & Tardella, F. (2016). Real-world datasets for portfolio selection and solutions of some stochastic dominance portfolio models. Data in Brief, 8, 858-862. doi:10.1016/j.dib.2016.06.031 es_ES
dc.description.references Cesarone, F., Scozzari, A., & Tardella, F. (2012). A new method for mean-variance portfolio optimization with cardinality constraints. Annals of Operations Research, 205(1), 213-234. doi:10.1007/s10479-012-1165-7 es_ES
dc.description.references Chang, T.-J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research, 27(13), 1271-1302. doi:10.1016/s0305-0548(99)00074-x es_ES
dc.description.references Chang, T.-J., Yang, S.-C., & Chang, K.-J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems with Applications, 36(7), 10529-10537. doi:10.1016/j.eswa.2009.02.062 es_ES
dc.description.references Cura, T. (2009). Particle swarm optimization approach to portfolio optimization. Nonlinear Analysis: Real World Applications, 10(4), 2396-2406. doi:10.1016/j.nonrwa.2008.04.023 es_ES
dc.description.references Deng, G.-F., Lin, W.-T., & Lo, C.-C. (2012). Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. Expert Systems with Applications, 39(4), 4558-4566. doi:10.1016/j.eswa.2011.09.129 es_ES
dc.description.references Guijarro, F. (2018). A similarity measure for the cardinality constrained frontier in the mean–variance optimization model. Journal of the Operational Research Society, 69(6), 928-945. doi:10.1057/s41274-017-0276-6 es_ES
dc.description.references Kalayci, C. B., Ertenlice, O., Akyer, H., & Aygoren, H. (2017). An artificial bee colony algorithm with feasibility enforcement and infeasibility toleration procedures for cardinality constrained portfolio optimization. Expert Systems with Applications, 85, 61-75. doi:10.1016/j.eswa.2017.05.018 es_ES
dc.description.references Li, D., & Ng, W.-L. (2000). Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation. Mathematical Finance, 10(3), 387-406. doi:10.1111/1467-9965.00100 es_ES
dc.description.references Liagkouras, K., & Metaxiotis, K. (2014). A new Probe Guided Mutation operator and its application for solving the cardinality constrained portfolio optimization problem. Expert Systems with Applications, 41(14), 6274-6290. doi:10.1016/j.eswa.2014.03.051 es_ES
dc.description.references Lwin, K., & Qu, R. (2013). A hybrid algorithm for constrained portfolio selection problems. Applied Intelligence, 39(2), 251-266. doi:10.1007/s10489-012-0411-7 es_ES
dc.description.references Markowitz, H. (1952). PORTFOLIO SELECTION*. The Journal of Finance, 7(1), 77-91. doi:10.1111/j.1540-6261.1952.tb01525.x es_ES
dc.description.references Meghwani, S. S., & Thakur, M. (2017). Multi-criteria algorithms for portfolio optimization under practical constraints. Swarm and Evolutionary Computation, 37, 104-125. doi:10.1016/j.swevo.2017.06.005 es_ES
dc.description.references Moscato, P., & Cotta, C. (s. f.). A Gentle Introduction to Memetic Algorithms. International Series in Operations Research & Management Science, 105-144. doi:10.1007/0-306-48056-5_5 es_ES
dc.description.references Peterson, B. & Carl, P. (2018). Performance analytics: Econometric tools for performance and risk analysis. Retrieved from https://CRAN.R-project.org/package=PerformanceAnalytics es_ES
dc.description.references Ruiz-Torrubiano, R., & Suárez, A. (2008). A hybrid optimization approach to index tracking. Annals of Operations Research, 166(1), 57-71. doi:10.1007/s10479-008-0404-4 es_ES
dc.description.references Ruiz-Torrubiano, R., & Suárez, A. (2015). A memetic algorithm for cardinality-constrained portfolio optimization with transaction costs. Applied Soft Computing, 36, 125-142. doi:10.1016/j.asoc.2015.06.053 es_ES
dc.description.references Sadjadi, S. J., Gharakhani, M., & Safari, E. (2012). Robust optimization framework for cardinality constrained portfolio problem. Applied Soft Computing, 12(1), 91-99. doi:10.1016/j.asoc.2011.09.006 es_ES
dc.description.references Bavarsad Salehpoor, I., & Molla-Alizadeh-Zavardehi, S. (2019). A constrained portfolio selection model at considering risk-adjusted measure by using hybrid meta-heuristic algorithms. Applied Soft Computing, 75, 233-253. doi:10.1016/j.asoc.2018.11.011 es_ES
dc.description.references Shaw, D. X., Liu, S., & Kopman, L. (2008). Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optimization Methods and Software, 23(3), 411-420. doi:10.1080/10556780701722542 es_ES
dc.description.references Soleimani, H., Golmakani, H. R., & Salimi, M. H. (2009). Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Systems with Applications, 36(3), 5058-5063. doi:10.1016/j.eswa.2008.06.007 es_ES
dc.description.references Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for the cardinality constrained efficient frontier. European Journal of Operational Research, 213(3), 538-550. doi:10.1016/j.ejor.2011.03.030 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem