- -

Influence of the linking bridge on the photoreactivity of benzophenone-thymine conjugates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of the linking bridge on the photoreactivity of benzophenone-thymine conjugates

Mostrar el registro completo del ítem

Blasco-Brusola, A.; Vayá Pérez, I.; Miranda Alonso, MÁ. (2020). Influence of the linking bridge on the photoreactivity of benzophenone-thymine conjugates. The Journal of Organic Chemistry. 85(21):14068-14076. https://doi.org/10.1021/acs.joc.0c02088

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164825

Ficheros en el ítem

Metadatos del ítem

Título: Influence of the linking bridge on the photoreactivity of benzophenone-thymine conjugates
Autor: Blasco-Brusola, Alejandro Vayá Pérez, Ignacio Miranda Alonso, Miguel Ángel
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Benzophenone (BP) is present in a variety of bioactive molecules. This chromophore is able to photosensitize DNA damage, where one of the most relevant BP/ DNA interactions occurs with thymine (Thy). In view of the ...[+]
Palabras clave: Excited-State interactions , Laser flash-photolysis , DNA-Damage , 6-4 Photoproduct , Naphthalene , Repair , Ketoprofen , Drugs , Light , Photosensitization
Derechos de uso: Reserva de todos los derechos
Fuente:
The Journal of Organic Chemistry. (issn: 0022-3263 )
DOI: 10.1021/acs.joc.0c02088
Editorial:
American Chemical Society
Versión del editor: https://doi.org/10.1021/acs.joc.0c02088
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2017%2F005/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/
info:eu-repo/grantAgreement/MINECO//RYC-2015-17737/ES/RYC-2015-17737/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-89416-R/ES/FUNCIONALIZACION DE NANOPARTICULAS DE ORO CON MARCADORES BIOLOGICOS Y SENSIBILIZADORES DE OXIGENO SINGLETE PARA SU USO EN BIOMEDICINA/
Agradecimientos:
Financial support from the Spanish Government (RYC-2015-17737 and CTQ2017-89416-R) and from the Conselleria d'Educació Cultura i Esport (PROMETEO/2017/075 and GRISOLIAP/2017/005) is gratefully acknowledged. The authors ...[+]
Tipo: Artículo

References

Kraemer, K. H. (1997). Sunlight and skin cancer: Another link revealed. Proceedings of the National Academy of Sciences, 94(1), 11-14. doi:10.1073/pnas.94.1.11

Cadet, J., Mouret, S., Ravanat, J.-L., & Douki, T. (2012). Photoinduced Damage to Cellular DNA: Direct and Photosensitized Reactions†. Photochemistry and Photobiology, 88(5), 1048-1065. doi:10.1111/j.1751-1097.2012.01200.x

Rastogi, R. P., Richa, Kumar, A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair. Journal of Nucleic Acids, 2010, 1-32. doi:10.4061/2010/592980 [+]
Kraemer, K. H. (1997). Sunlight and skin cancer: Another link revealed. Proceedings of the National Academy of Sciences, 94(1), 11-14. doi:10.1073/pnas.94.1.11

Cadet, J., Mouret, S., Ravanat, J.-L., & Douki, T. (2012). Photoinduced Damage to Cellular DNA: Direct and Photosensitized Reactions†. Photochemistry and Photobiology, 88(5), 1048-1065. doi:10.1111/j.1751-1097.2012.01200.x

Rastogi, R. P., Richa, Kumar, A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair. Journal of Nucleic Acids, 2010, 1-32. doi:10.4061/2010/592980

Sinha, R. P., & Häder, D.-P. (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences, 1(4), 225-236. doi:10.1039/b201230h

Chatterjee, N., & Walker, G. C. (2017). Mechanisms of DNA damage, repair, and mutagenesis. Environmental and Molecular Mutagenesis, 58(5), 235-263. doi:10.1002/em.22087

Brash, D. E., & Haseltine, W. A. (1982). UV-induced mutation hotspots occur at DNA damage hotspots. Nature, 298(5870), 189-192. doi:10.1038/298189a0

Taylor, J. S., & Cohrs, M. P. (1987). DNA, light, and Dewar pyrimidinones: the structure and biological significance to TpT3. Journal of the American Chemical Society, 109(9), 2834-2835. doi:10.1021/ja00243a052

Taylor, J. S., Garrett, D. S., & Cohrs, M. P. (1988). Solution-state structure of the Dewar pyrimidinone photoproduct of thymidylyl-(3’ .fwdarw. 5’)-thymidine. Biochemistry, 27(19), 7206-7215. doi:10.1021/bi00419a007

Kim, S. T., Malhotra, K., Smith, C. A., Taylor, J. S., & Sancar, A. (1994). Characterization of (6-4) photoproduct DNA photolyase. Journal of Biological Chemistry, 269(11), 8535-8540. doi:10.1016/s0021-9258(17)37228-9

Li, J., Liu, Z., Tan, C., Guo, X., Wang, L., Sancar, A., & Zhong, D. (2010). Dynamics and mechanism of repair of ultraviolet-induced (6–4) photoproduct by photolyase. Nature, 466(7308), 887-890. doi:10.1038/nature09192

Todo, T., Ryo, H., Yamamoto, K., Toh, H., Inui, T., Ayaki, H., … Ikenaga, M. (1996). Similarity Among the Drosophila (6-4)Photolyase, a Human Photolyase Homolog, and the DNA Photolyase-Blue-Light Photoreceptor Family. Science, 272(5258), 109-112. doi:10.1126/science.272.5258.109

Todo, T., Takemori, H., Ryo, H., lhara, M., Matsunaga, T., Nikaido, O., … Nomura, T. (1993). A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6-4)photoproducts. Nature, 361(6410), 371-374. doi:10.1038/361371a0

Todo, T., Tsuji, H., Otoshi, E., Hitomi, K., Sang-Tae Kim, & Ikenaga, M. (1997). Characterization of a human homolog of (6-4)photolyase. Mutation Research/DNA Repair, 384(3), 195-204. doi:10.1016/s0921-8777(97)00032-3

Epe, B., Pflaum, M., & Boiteux, S. (1993). DNA damage induced by photosensitizers in cellular and cell-free systems. Mutation Research/Genetic Toxicology, 299(3-4), 135-145. doi:10.1016/0165-1218(93)90091-q

Michaud, S., Hajj, V., Latapie, L., Noirot, A., Sartor, V., Fabre, P.-L., & Chouini-Lalanne, N. (2012). Correlations between electrochemical behaviors and DNA photooxidative properties of non-steroïdal anti-inflammatory drugs and their photoproducts. Journal of Photochemistry and Photobiology B: Biology, 110, 34-42. doi:10.1016/j.jphotobiol.2012.02.007

Marguery, M. C., Chouini-Lalanne, N., Ader, J. C., & Paillous, N. (1998). Comparison of the DNA Damage Photoinduced by Fenofibrate and Ketoprofen, Two Phototoxic Drugs of Parent Structure. Photochemistry and Photobiology, 68(5), 679-684. doi:10.1111/j.1751-1097.1998.tb02529.x

Vinette, A. L., McNamee, J. P., Bellier, P. V., McLean, J. R. N., & Scaiano, J. C. (2003). Prompt and Delayed Nonsteroidal Anti-inflammatory Drug–photoinduced DNA Damage in Peripheral Blood Mononuclear Cells Measured with the Comet Assay¶. Photochemistry and Photobiology, 77(4), 390. doi:10.1562/0031-8655(2003)077<0390:padnad>2.0.co;2

Lhiaubet, V., Gutierrez, F., Penaud–Berruyer, F., Amouyal, E., Daudey, J.-P., Poteau, R., … Paillous, N. (2000). Spectroscopic and theoretical studies of the excited states of fenofibric acid and ketoprofen in relation with their photosensitizing properties. New Journal of Chemistry, 24(6), 403-410. doi:10.1039/a909539j

Lhiaubet, V., Paillous, N., & Chouini-Lalanne, N. (2001). Comparison of DNA Damage Photoinduced by Ketoprofen, Fenofibric Acid and Benzophenone via Electron and Energy Transfer¶. Photochemistry and Photobiology, 74(5), 670. doi:10.1562/0031-8655(2001)074<0670:coddpb>2.0.co;2

Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e

Bignon, E., Marazzi, M., Besancenot, V., Gattuso, H., Drouot, G., Morell, C., … Monari, A. (2017). Ibuprofen and ketoprofen potentiate UVA-induced cell death by a photosensitization process. Scientific Reports, 7(1). doi:10.1038/s41598-017-09406-8

Boscá, F., & Miranda, M. A. (1998). New Trends in Photobiology (Invited Review) Photosensitizing drugs containing the benzophenone chromophore. Journal of Photochemistry and Photobiology B: Biology, 43(1), 1-26. doi:10.1016/s1011-1344(98)00062-1

Rogers, J. E., & Kelly, L. A. (1999). Nucleic Acid Oxidation Mediated by Naphthalene and Benzophenone Imide and Diimide Derivatives:  Consequences for DNA Redox Chemistry. Journal of the American Chemical Society, 121(16), 3854-3861. doi:10.1021/ja9841299

Surana, K., Chaudhary, B., Diwaker, M., & Sharma, S. (2018). Benzophenone: a ubiquitous scaffold in medicinal chemistry. MedChemComm, 9(11), 1803-1817. doi:10.1039/c8md00300a

Cuquerella, M. C., Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2011). Photosensitised pyrimidine dimerisation in DNA. Chemical Science, 2(7), 1219. doi:10.1039/c1sc00088h

Blasco-Brusola, A., Navarrete-Miguel, M., Giussani, A., Roca-Sanjuán, D., Vayá, I., & Miranda, M. A. (2020). Regiochemical memory in the adiabatic photolysis of thymine-derived oxetanes. A combined ultrafast spectroscopic and CASSCF/CASPT2 computational study. Physical Chemistry Chemical Physics, 22(35), 20037-20042. doi:10.1039/d0cp03084h

Burrows, C. J., & Muller, J. G. (1998). Oxidative Nucleobase Modifications Leading to Strand Scission. Chemical Reviews, 98(3), 1109-1152. doi:10.1021/cr960421s

Belmadoui, N., Climent, M. J., & Miranda, M. A. (2006). Photochemistry of a naphthalene–thymine dyad in the presence of acetone. Tetrahedron, 62(7), 1372-1377. doi:10.1016/j.tet.2005.11.035

Bonancía, P., Vayá, I., Climent, M. J., Gustavsson, T., Markovitsi, D., Jiménez, M. C., & Miranda, M. A. (2012). Excited-State Interactions in Diastereomeric Flurbiprofen–Thymine Dyads. The Journal of Physical Chemistry A, 116(35), 8807-8814. doi:10.1021/jp3063838

Encinas, S., Climent, M. J., Gil, S., Abrahamsson, U. O., Davidsson, J., & Miranda, M. A. (2004). Singlet Excited-State Interactions in Naphthalene-Thymine Dyads. ChemPhysChem, 5(11), 1704-1709. doi:10.1002/cphc.200400262

Belmadoui, N., Encinas, S., Climent, M. J., Gil, S., & Miranda, M. A. (2006). Intramolecular Interactions in the Triplet Excited States of Benzophenone–Thymine Dyads. Chemistry - A European Journal, 12(2), 553-561. doi:10.1002/chem.200500345

Dumont, E., Wibowo, M., Roca-Sanjuán, D., Garavelli, M., Assfeld, X., & Monari, A. (2015). Resolving the Benzophenone DNA-Photosensitization Mechanism at QM/MM Level. The Journal of Physical Chemistry Letters, 6(4), 576-580. doi:10.1021/jz502562d

Delatour, T., Douki, T., D’Ham, C., & Cadet, J. (1998). Photosensitization of thymine nucleobase by benzophenone through energy transfer, hydrogen abstraction and one-electron oxidation. Journal of Photochemistry and Photobiology B: Biology, 44(3), 191-198. doi:10.1016/s1011-1344(98)00142-0

Tamai, N., Asahi, T., & Masuhara, H. (1992). Intersystem crossing of benzophenone by femtosecond transient grating spectroscopy. Chemical Physics Letters, 198(3-4), 413-418. doi:10.1016/0009-2614(92)85074-k

Gut, I. G., Wood, P. D., & Redmond, R. W. (1996). Interaction of Triplet Photosensitizers with Nucleotides and DNA in Aqueous Solution at Room Temperature. Journal of the American Chemical Society, 118(10), 2366-2373. doi:10.1021/ja9519344

Miro, P., Gomez‐Mendoza, M., Sastre, G., Cuquerella, M. C., Miranda, M. A., & Marin, M. L. (2019). Generation of the Thymine Triplet State by Through‐Bond Energy Transfer. Chemistry – A European Journal, 25(28), 7004-7011. doi:10.1002/chem.201900830

Joseph, A., Prakash, G., & Falvey, D. E. (2000). Model Studies of the (6−4) Photoproduct Photolyase Enzyme:  Laser Flash Photolysis Experiments Confirm Radical Ion Intermediates in the Sensitized Repair of Thymine Oxetane Adducts. Journal of the American Chemical Society, 122(45), 11219-11225. doi:10.1021/ja002541u

Martínez, L. J., & Scaiano, J. C. (1997). Transient Intermediates in the Laser Flash Photolysis of Ketoprofen in Aqueous Solutions:  Unusual Photochemistry for the Benzophenone Chromophore. Journal of the American Chemical Society, 119(45), 11066-11070. doi:10.1021/ja970818t

Perez-Ruiz, R., Groeneveld, M., van Stokkum, I. H. M., Tormos, R., Williams, R. M., & Miranda, M. A. (2006). Fast transient absorption spectroscopy of the early events in photoexcited chiral benzophenone–naphthalene dyads. Chemical Physics Letters, 429(1-3), 276-281. doi:10.1016/j.cplett.2006.07.077

Martens, J.; Maison, W.; Schlemminger, I.; Westerhoff, O.; Groger, H. Preparation of Precursors for PNA monomers. WO20000028642000.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem