Kraemer, K. H. (1997). Sunlight and skin cancer: Another link revealed. Proceedings of the National Academy of Sciences, 94(1), 11-14. doi:10.1073/pnas.94.1.11
Cadet, J., Mouret, S., Ravanat, J.-L., & Douki, T. (2012). Photoinduced Damage to Cellular DNA: Direct and Photosensitized Reactions†. Photochemistry and Photobiology, 88(5), 1048-1065. doi:10.1111/j.1751-1097.2012.01200.x
Rastogi, R. P., Richa, Kumar, A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair. Journal of Nucleic Acids, 2010, 1-32. doi:10.4061/2010/592980
[+]
Kraemer, K. H. (1997). Sunlight and skin cancer: Another link revealed. Proceedings of the National Academy of Sciences, 94(1), 11-14. doi:10.1073/pnas.94.1.11
Cadet, J., Mouret, S., Ravanat, J.-L., & Douki, T. (2012). Photoinduced Damage to Cellular DNA: Direct and Photosensitized Reactions†. Photochemistry and Photobiology, 88(5), 1048-1065. doi:10.1111/j.1751-1097.2012.01200.x
Rastogi, R. P., Richa, Kumar, A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair. Journal of Nucleic Acids, 2010, 1-32. doi:10.4061/2010/592980
Sinha, R. P., & Häder, D.-P. (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences, 1(4), 225-236. doi:10.1039/b201230h
Chatterjee, N., & Walker, G. C. (2017). Mechanisms of DNA damage, repair, and mutagenesis. Environmental and Molecular Mutagenesis, 58(5), 235-263. doi:10.1002/em.22087
Brash, D. E., & Haseltine, W. A. (1982). UV-induced mutation hotspots occur at DNA damage hotspots. Nature, 298(5870), 189-192. doi:10.1038/298189a0
Taylor, J. S., & Cohrs, M. P. (1987). DNA, light, and Dewar pyrimidinones: the structure and biological significance to TpT3. Journal of the American Chemical Society, 109(9), 2834-2835. doi:10.1021/ja00243a052
Taylor, J. S., Garrett, D. S., & Cohrs, M. P. (1988). Solution-state structure of the Dewar pyrimidinone photoproduct of thymidylyl-(3’ .fwdarw. 5’)-thymidine. Biochemistry, 27(19), 7206-7215. doi:10.1021/bi00419a007
Kim, S. T., Malhotra, K., Smith, C. A., Taylor, J. S., & Sancar, A. (1994). Characterization of (6-4) photoproduct DNA photolyase. Journal of Biological Chemistry, 269(11), 8535-8540. doi:10.1016/s0021-9258(17)37228-9
Li, J., Liu, Z., Tan, C., Guo, X., Wang, L., Sancar, A., & Zhong, D. (2010). Dynamics and mechanism of repair of ultraviolet-induced (6–4) photoproduct by photolyase. Nature, 466(7308), 887-890. doi:10.1038/nature09192
Todo, T., Ryo, H., Yamamoto, K., Toh, H., Inui, T., Ayaki, H., … Ikenaga, M. (1996). Similarity Among the
Drosophila
(6-4)Photolyase, a Human Photolyase Homolog, and the DNA Photolyase-Blue-Light Photoreceptor Family. Science, 272(5258), 109-112. doi:10.1126/science.272.5258.109
Todo, T., Takemori, H., Ryo, H., lhara, M., Matsunaga, T., Nikaido, O., … Nomura, T. (1993). A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6-4)photoproducts. Nature, 361(6410), 371-374. doi:10.1038/361371a0
Todo, T., Tsuji, H., Otoshi, E., Hitomi, K., Sang-Tae Kim, & Ikenaga, M. (1997). Characterization of a human homolog of (6-4)photolyase. Mutation Research/DNA Repair, 384(3), 195-204. doi:10.1016/s0921-8777(97)00032-3
Epe, B., Pflaum, M., & Boiteux, S. (1993). DNA damage induced by photosensitizers in cellular and cell-free systems. Mutation Research/Genetic Toxicology, 299(3-4), 135-145. doi:10.1016/0165-1218(93)90091-q
Michaud, S., Hajj, V., Latapie, L., Noirot, A., Sartor, V., Fabre, P.-L., & Chouini-Lalanne, N. (2012). Correlations between electrochemical behaviors and DNA photooxidative properties of non-steroïdal anti-inflammatory drugs and their photoproducts. Journal of Photochemistry and Photobiology B: Biology, 110, 34-42. doi:10.1016/j.jphotobiol.2012.02.007
Marguery, M. C., Chouini-Lalanne, N., Ader, J. C., & Paillous, N. (1998). Comparison of the DNA Damage Photoinduced by Fenofibrate and Ketoprofen, Two Phototoxic Drugs of Parent Structure. Photochemistry and Photobiology, 68(5), 679-684. doi:10.1111/j.1751-1097.1998.tb02529.x
Vinette, A. L., McNamee, J. P., Bellier, P. V., McLean, J. R. N., & Scaiano, J. C. (2003). Prompt and Delayed Nonsteroidal Anti-inflammatory Drug–photoinduced DNA Damage in Peripheral Blood Mononuclear Cells Measured with the Comet Assay¶. Photochemistry and Photobiology, 77(4), 390. doi:10.1562/0031-8655(2003)077<0390:padnad>2.0.co;2
Lhiaubet, V., Gutierrez, F., Penaud–Berruyer, F., Amouyal, E., Daudey, J.-P., Poteau, R., … Paillous, N. (2000). Spectroscopic and theoretical studies of the excited states of fenofibric acid and ketoprofen in relation with their photosensitizing properties. New Journal of Chemistry, 24(6), 403-410. doi:10.1039/a909539j
Lhiaubet, V., Paillous, N., & Chouini-Lalanne, N. (2001). Comparison of DNA Damage Photoinduced by Ketoprofen, Fenofibric Acid and Benzophenone via Electron and Energy Transfer¶. Photochemistry and Photobiology, 74(5), 670. doi:10.1562/0031-8655(2001)074<0670:coddpb>2.0.co;2
Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e
Bignon, E., Marazzi, M., Besancenot, V., Gattuso, H., Drouot, G., Morell, C., … Monari, A. (2017). Ibuprofen and ketoprofen potentiate UVA-induced cell death by a photosensitization process. Scientific Reports, 7(1). doi:10.1038/s41598-017-09406-8
Boscá, F., & Miranda, M. A. (1998). New Trends in Photobiology (Invited Review) Photosensitizing drugs containing the benzophenone chromophore. Journal of Photochemistry and Photobiology B: Biology, 43(1), 1-26. doi:10.1016/s1011-1344(98)00062-1
Rogers, J. E., & Kelly, L. A. (1999). Nucleic Acid Oxidation Mediated by Naphthalene and Benzophenone Imide and Diimide Derivatives: Consequences for DNA Redox Chemistry. Journal of the American Chemical Society, 121(16), 3854-3861. doi:10.1021/ja9841299
Surana, K., Chaudhary, B., Diwaker, M., & Sharma, S. (2018). Benzophenone: a ubiquitous scaffold in medicinal chemistry. MedChemComm, 9(11), 1803-1817. doi:10.1039/c8md00300a
Cuquerella, M. C., Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2011). Photosensitised pyrimidine dimerisation in DNA. Chemical Science, 2(7), 1219. doi:10.1039/c1sc00088h
Blasco-Brusola, A., Navarrete-Miguel, M., Giussani, A., Roca-Sanjuán, D., Vayá, I., & Miranda, M. A. (2020). Regiochemical memory in the adiabatic photolysis of thymine-derived oxetanes. A combined ultrafast spectroscopic and CASSCF/CASPT2 computational study. Physical Chemistry Chemical Physics, 22(35), 20037-20042. doi:10.1039/d0cp03084h
Burrows, C. J., & Muller, J. G. (1998). Oxidative Nucleobase Modifications Leading to Strand Scission. Chemical Reviews, 98(3), 1109-1152. doi:10.1021/cr960421s
Belmadoui, N., Climent, M. J., & Miranda, M. A. (2006). Photochemistry of a naphthalene–thymine dyad in the presence of acetone. Tetrahedron, 62(7), 1372-1377. doi:10.1016/j.tet.2005.11.035
Bonancía, P., Vayá, I., Climent, M. J., Gustavsson, T., Markovitsi, D., Jiménez, M. C., & Miranda, M. A. (2012). Excited-State Interactions in Diastereomeric Flurbiprofen–Thymine Dyads. The Journal of Physical Chemistry A, 116(35), 8807-8814. doi:10.1021/jp3063838
Encinas, S., Climent, M. J., Gil, S., Abrahamsson, U. O., Davidsson, J., & Miranda, M. A. (2004). Singlet Excited-State Interactions in Naphthalene-Thymine Dyads. ChemPhysChem, 5(11), 1704-1709. doi:10.1002/cphc.200400262
Belmadoui, N., Encinas, S., Climent, M. J., Gil, S., & Miranda, M. A. (2006). Intramolecular Interactions in the Triplet Excited States of Benzophenone–Thymine Dyads. Chemistry - A European Journal, 12(2), 553-561. doi:10.1002/chem.200500345
Dumont, E., Wibowo, M., Roca-Sanjuán, D., Garavelli, M., Assfeld, X., & Monari, A. (2015). Resolving the Benzophenone DNA-Photosensitization Mechanism at QM/MM Level. The Journal of Physical Chemistry Letters, 6(4), 576-580. doi:10.1021/jz502562d
Delatour, T., Douki, T., D’Ham, C., & Cadet, J. (1998). Photosensitization of thymine nucleobase by benzophenone through energy transfer, hydrogen abstraction and one-electron oxidation. Journal of Photochemistry and Photobiology B: Biology, 44(3), 191-198. doi:10.1016/s1011-1344(98)00142-0
Tamai, N., Asahi, T., & Masuhara, H. (1992). Intersystem crossing of benzophenone by femtosecond transient grating spectroscopy. Chemical Physics Letters, 198(3-4), 413-418. doi:10.1016/0009-2614(92)85074-k
Gut, I. G., Wood, P. D., & Redmond, R. W. (1996). Interaction of Triplet Photosensitizers with Nucleotides and DNA in Aqueous Solution at Room Temperature. Journal of the American Chemical Society, 118(10), 2366-2373. doi:10.1021/ja9519344
Miro, P., Gomez‐Mendoza, M., Sastre, G., Cuquerella, M. C., Miranda, M. A., & Marin, M. L. (2019). Generation of the Thymine Triplet State by Through‐Bond Energy Transfer. Chemistry – A European Journal, 25(28), 7004-7011. doi:10.1002/chem.201900830
Joseph, A., Prakash, G., & Falvey, D. E. (2000). Model Studies of the (6−4) Photoproduct Photolyase Enzyme: Laser Flash Photolysis Experiments Confirm Radical Ion Intermediates in the Sensitized Repair of Thymine Oxetane Adducts. Journal of the American Chemical Society, 122(45), 11219-11225. doi:10.1021/ja002541u
Martínez, L. J., & Scaiano, J. C. (1997). Transient Intermediates in the Laser Flash Photolysis of Ketoprofen in Aqueous Solutions: Unusual Photochemistry for the Benzophenone Chromophore. Journal of the American Chemical Society, 119(45), 11066-11070. doi:10.1021/ja970818t
Perez-Ruiz, R., Groeneveld, M., van Stokkum, I. H. M., Tormos, R., Williams, R. M., & Miranda, M. A. (2006). Fast transient absorption spectroscopy of the early events in photoexcited chiral benzophenone–naphthalene dyads. Chemical Physics Letters, 429(1-3), 276-281. doi:10.1016/j.cplett.2006.07.077
Martens, J.; Maison, W.; Schlemminger, I.; Westerhoff, O.; Groger, H. Preparation of Precursors for PNA monomers. WO20000028642000.
[-]