- -

On soft quasi-pseudometric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On soft quasi-pseudometric spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sabao, Hope es_ES
dc.contributor.author Otafudu, Olivier Olela es_ES
dc.date.accessioned 2021-04-16T07:01:56Z
dc.date.available 2021-04-16T07:01:56Z
dc.date.issued 2021-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/165236
dc.description.abstract [EN] In this article, we introduce the concept of a soft quasi-pseudometric space. We show that every soft quasi-pseudometric induces a compatible quasi-pseudometric on the collection of all soft points of the absolute soft set whenever the parameter set is finite. We then introduce the concept of soft Isbell convexity and show that a self non-expansive map of a soft quasi-metric space has a nonempty soft Isbell convex fixed point set. es_ES
dc.description.sponsorship The authors would like to thank the anonymous referee for the suggestions that have improved the presentation of this paper. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Soft-metric es_ES
dc.subject Soft-quasi-pseudometric es_ES
dc.subject Soft Isbell convexity es_ES
dc.title On soft quasi-pseudometric spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.13084
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sabao, H.; Otafudu, OO. (2021). On soft quasi-pseudometric spaces. Applied General Topology. 22(1):17-30. https://doi.org/10.4995/agt.2021.13084 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.13084 es_ES
dc.description.upvformatpinicio 17 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\13084 es_ES
dc.description.references H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007), 2226-2735. https://doi.org/10.1016/j.ins.2006.12.008 es_ES
dc.description.references A. Aygünoglu and H. Aygün, Some notes on soft topological spaces, Neural. Comput. Appl. 21 (2012), 113-119. https://doi.org/10.1007/s00521-011-0722-3 es_ES
dc.description.references N. Aronszajn and P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439. https://doi.org/10.2140/pjm.1956.6.405 es_ES
dc.description.references M. I. Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009), 1547-1553. https://doi.org/10.1016/j.camwa.2008.11.009 es_ES
dc.description.references M. Abbas, G. Murtaza and S. Romaguera, On the fixed point theory of soft metric spaces. Fixed Point Theory Appl. 2016, 17 (2016). https://doi.org/10.1186/s13663-016-0502-y es_ES
dc.description.references A. Dress, V. Moulton and M. Steel, Trees, taxonomy and strongly compatible multi-state characters, Adv. Appl. Math. 71 (1997), 1-30. https://doi.org/10.1006/aama.1996.0503 es_ES
dc.description.references P. Fletcher and W. F. Lindgren, Quasi-uniform Spaces. Marcel Dekker, New York (1982). es_ES
dc.description.references D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999), 19-31. https://doi.org/10.1016/S0898-1221(99)00056-5 es_ES
dc.description.references J. R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helvetici 39 (1964), 439-447. https://doi.org/10.1007/BF02566944 es_ES
dc.description.references H.-P. A. Künzi, Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology, in: Handbook of the History of General Topology (eds. C.E. Aull and R. Lowen), vol. 3, Kluwer (Dordrecht, 2001), pp. 853-968. https://doi.org/10.1007/978-94-017-0470-0_3 es_ES
dc.description.references H.-P. A Künzi and O. Olela Otafudu, q-Hyperconvexity in quasi-pseudometric spaces and fixed point theorems, J. Func. Spaces Appl. 2012 (2012), 765903. https://doi.org/10.1155/2012/765903 es_ES
dc.description.references E. Kemajou, H.-P. A Künzi and O. Olela Otafudu, The Isbell-hull of a di-space. Topology Appl. 159 (2012), 2463-2475. https://doi.org/10.1016/j.topol.2011.02.016 es_ES
dc.description.references O. Olela Otafudu, Convexity in quasi-metric spaces, PhD thesis, University of Cape Town (2012). es_ES
dc.description.references O. Olela Otafudu and H. Sabao, Set-valued contractions and q-hyperconvex spaces, J. Nonlinear Convex Anal. 18 (2017), 1609-1617. https://doi.org/10.4995/agt.2017.5818 es_ES
dc.description.references S. Das and S. K. Samanta, Soft real sets, soft real numbers and their properties, J. Fuzzy Math. 20 (2012), 551-576. es_ES
dc.description.references S. Das and S. K. Samanta, Soft metric, Ann Fuzzy Math. Inform. 6 (2013), 77-94. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem