- -

Convexity and freezing sets in digital topology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Convexity and freezing sets in digital topology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boxer, Laurence es_ES
dc.date.accessioned 2021-04-16T09:02:33Z
dc.date.available 2021-04-16T09:02:33Z
dc.date.issued 2021-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/165246
dc.description.abstract [EN] We continue the study of freezing sets in digital topology, introduced in [4]. We show how to find a minimal freezing set for a "thick" convex disk X in the digital plane Z^2. We give examples showing the significance of the assumption that X is convex. es_ES
dc.description.sponsorship The suggestions and corrections of the anonymous reviewers are gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Digital topology es_ES
dc.subject Freezing set es_ES
dc.subject Convexity es_ES
dc.subject Digital disk es_ES
dc.title Convexity and freezing sets in digital topology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.14185
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Boxer, L. (2021). Convexity and freezing sets in digital topology. Applied General Topology. 22(1):121-137. https://doi.org/10.4995/agt.2021.14185 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.14185 es_ES
dc.description.upvformatpinicio 121 es_ES
dc.description.upvformatpfin 137 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\14185 es_ES
dc.description.references L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456 es_ES
dc.description.references L. Boxer, Remarks on fixed point assertions in digital topology, 2, Applied General Topology 20, no. 1 (2019), 155-175. https://doi.org/10.4995/agt.2019.10667 es_ES
dc.description.references L. Boxer, Remarks on fixed point assertions in digital topology, 3, Applied General Topology 20, no. 2 (2019), 349-361. https://doi.org/10.4995/agt.2019.11117 es_ES
dc.description.references L. Boxer, Fixed point sets in digital topology, 2, Applied General Topology 21, no. 1 (2020), 111-133. https://doi.org/10.4995/agt.2020.12101 es_ES
dc.description.references L. Boxer, Remarks on fixed point assertions in digital topology, 4, Applied General Topology 21, no. 2 (2020), 265-284. https://doi.org/10.4995/agt.2020.13075 es_ES
dc.description.references L. Boxer, Approximate fixed point properties in digital topology, Bulletin of the International Mathematical Virtual Institute 10, no. 2 (2020), 357-367. es_ES
dc.description.references L. Boxer, Approximate fixed point property for digital trees and products, Bulletin of the International Mathematical Virtual Institute 10, no. 3 (2020), 595-602. es_ES
dc.description.references L. Boxer, O. Ege, I. Karaca, J. Lopez and J. Louwsma, Digital fixed points, approximate fixed points, and universal functions, Applied General Topology 17, no. 2 (2016), 159-172. https://doi.org/10.4995/agt.2016.4704 es_ES
dc.description.references L. Boxer and P.C. Staecker, Fixed point sets in digital topology, 1, Applied General Topology 21, no. 1 (2020), 87-110. https://doi.org/10.4995/agt.2020.12091 es_ES
dc.description.references L. Chen, Gradually varied surfaces and its optimal uniform approximation, SPIE Proceedings 2182 (1994), 300-307. https://doi.org/10.1117/12.171078 es_ES
dc.description.references L. Chen, Discrete Surfaces and Manifolds, Scientific Practical Computing, Rockville, MD, 2004. es_ES
dc.description.references O. Ege and I. Karaca, Banach fixed point theorem for digital images, Journal of Nonlinear Sciences and Applications 8 (2015), 237u-245. https://doi.org/10.22436/jnsa.008.03.08 es_ES
dc.description.references J. Haarmann, M. . Murphy, C.S. Peters, and P. C. Staecker, Homotopy equivalence in finite digital images, Journal of Mathematical Imaging and Vision 53 (2015), 288-302. https://doi.org/10.1007/s10851-015-0578-8 es_ES
dc.description.references A. Rosenfeld, Digital topology, The American Mathematical Monthly 86, no. 8 (1979), 621-630. https://doi.org/10.1080/00029890.1979.11994873 es_ES
dc.description.references A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem