- -

Convexity and freezing sets in digital topology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Convexity and freezing sets in digital topology

Mostrar el registro completo del ítem

Boxer, L. (2021). Convexity and freezing sets in digital topology. Applied General Topology. 22(1):121-137. https://doi.org/10.4995/agt.2021.14185

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165246

Ficheros en el ítem

Metadatos del ítem

Título: Convexity and freezing sets in digital topology
Autor: Boxer, Laurence
Fecha difusión:
Resumen:
[EN] We continue the study of freezing sets in digital topology, introduced in [4]. We show how to find a minimal freezing set for a "thick" convex disk X in the digital plane Z^2. We give examples showing the significance of ...[+]
Palabras clave: Digital topology , Freezing set , Convexity , Digital disk
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2021.14185
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2021.14185
Agradecimientos:
The suggestions and corrections of the anonymous reviewers are gratefully acknowledged.
Tipo: Artículo

References

L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456

L. Boxer, Remarks on fixed point assertions in digital topology, 2, Applied General Topology 20, no. 1 (2019), 155-175. https://doi.org/10.4995/agt.2019.10667

L. Boxer, Remarks on fixed point assertions in digital topology, 3, Applied General Topology 20, no. 2 (2019), 349-361. https://doi.org/10.4995/agt.2019.11117 [+]
L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456

L. Boxer, Remarks on fixed point assertions in digital topology, 2, Applied General Topology 20, no. 1 (2019), 155-175. https://doi.org/10.4995/agt.2019.10667

L. Boxer, Remarks on fixed point assertions in digital topology, 3, Applied General Topology 20, no. 2 (2019), 349-361. https://doi.org/10.4995/agt.2019.11117

L. Boxer, Fixed point sets in digital topology, 2, Applied General Topology 21, no. 1 (2020), 111-133. https://doi.org/10.4995/agt.2020.12101

L. Boxer, Remarks on fixed point assertions in digital topology, 4, Applied General Topology 21, no. 2 (2020), 265-284. https://doi.org/10.4995/agt.2020.13075

L. Boxer, Approximate fixed point properties in digital topology, Bulletin of the International Mathematical Virtual Institute 10, no. 2 (2020), 357-367.

L. Boxer, Approximate fixed point property for digital trees and products, Bulletin of the International Mathematical Virtual Institute 10, no. 3 (2020), 595-602.

L. Boxer, O. Ege, I. Karaca, J. Lopez and J. Louwsma, Digital fixed points, approximate fixed points, and universal functions, Applied General Topology 17, no. 2 (2016), 159-172. https://doi.org/10.4995/agt.2016.4704

L. Boxer and P.C. Staecker, Fixed point sets in digital topology, 1, Applied General Topology 21, no. 1 (2020), 87-110. https://doi.org/10.4995/agt.2020.12091

L. Chen, Gradually varied surfaces and its optimal uniform approximation, SPIE Proceedings 2182 (1994), 300-307. https://doi.org/10.1117/12.171078

L. Chen, Discrete Surfaces and Manifolds, Scientific Practical Computing, Rockville, MD, 2004.

O. Ege and I. Karaca, Banach fixed point theorem for digital images, Journal of Nonlinear Sciences and Applications 8 (2015), 237u-245. https://doi.org/10.22436/jnsa.008.03.08

J. Haarmann, M. . Murphy, C.S. Peters, and P. C. Staecker, Homotopy equivalence in finite digital images, Journal of Mathematical Imaging and Vision 53 (2015), 288-302. https://doi.org/10.1007/s10851-015-0578-8

A. Rosenfeld, Digital topology, The American Mathematical Monthly 86, no. 8 (1979), 621-630. https://doi.org/10.1080/00029890.1979.11994873

A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem