- -

Highly active hybrid mesoporous silica-supported base organocatalysts for C-C bond formation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Highly active hybrid mesoporous silica-supported base organocatalysts for C-C bond formation

Show full item record

Erigoni, A.; Hernández Soto, MC.; Rey Garcia, F.; Segarra-Almela, MDLC.; Díaz Morales, UM. (2020). Highly active hybrid mesoporous silica-supported base organocatalysts for C-C bond formation. Catalysis Today. 345:227-236. https://doi.org/10.1016/j.cattod.2019.09.041

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165275

Files in this item

Item Metadata

Title: Highly active hybrid mesoporous silica-supported base organocatalysts for C-C bond formation
Author: Erigoni, Andrea Hernández Soto, María Consuelo Rey Garcia, Fernando Segarra-Almela, Mª De La Candelaria DÍAZ MORALES, URBANO MANUEL
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
[EN] New base hybrid catalysts, based on silyl-derivatives of molecules carrying amino, diamino, pyrrolidine, pyrazolium and imidazolium functionalities have been successfully achieved through post synthetic grafting onto ...[+]
Subjects: Organic-inorganic hybrid catalysts , Base sites , Mesoporous and microporous materials , C-C bond forming reactions
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Catalysis Today. (issn: 0920-5861 )
DOI: 10.1016/j.cattod.2019.09.041
Publisher version: https://doi.org/10.1016/j.cattod.2019.09.041
Conference name: 8th Czech-Italian-Spanish Conference on Molecular Sieves and Catalysis (CIS8)
Conference place: Amantea, Italy
Conference date: Junio 11-14,2019
Project ID:
info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/
Ministerio Ciencia, Innovación y Universidades/MAT2017-82288-C2-1-P
The authors are grateful for financial support from the Spanish Government by MAT2017-82288-C2-1-P and Severo Ochoa Excellence ProgramSEV-2016-0683. The authors thank the MULTY2HYCAT (EUHorizon 2020 funded project under ...[+]
Type: Artículo Comunicación en congreso


Díaz, U., Brunel, D., & Corma, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews, 42(9), 4083. doi:10.1039/c2cs35385g

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Loy, D. A., & Shea, K. J. (1995). Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials. Chemical Reviews, 95(5), 1431-1442. doi:10.1021/cr00037a013 [+]
Díaz, U., Brunel, D., & Corma, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews, 42(9), 4083. doi:10.1039/c2cs35385g

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Loy, D. A., & Shea, K. J. (1995). Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials. Chemical Reviews, 95(5), 1431-1442. doi:10.1021/cr00037a013

Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075

Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m

Vallé, K., Belleville, P., Pereira, F., & Sanchez, C. (2006). Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer. Nature Materials, 5(2), 107-111. doi:10.1038/nmat1570

Boury, B., & Corriu, R. J. P. (2002). Auto-organisation of hybrid organic–inorganic materials prepared by sol–gel chemistry. Chemical Communications, (8), 795-802. doi:10.1039/b109040m

Mehdi, A., Reye, C., & Corriu, R. (2011). From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chem. Soc. Rev., 40(2), 563-574. doi:10.1039/b920516k

Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k

Sanchez, C., Rozes, L., Ribot, F., Laberty-Robert, C., Grosso, D., Sassoye, C., … Nicole, L. (2010). «Chimie douce»: A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. Comptes Rendus Chimie, 13(1-2), 3-39. doi:10.1016/j.crci.2009.06.001

Park, J.-W., Park, Y. J., & Jun, C.-H. (2011). Post-grafting of silica surfaces with pre-functionalized organosilanes: new synthetic equivalents of conventional trialkoxysilanes. Chemical Communications, 47(17), 4860. doi:10.1039/c1cc00038a

Lauwaert, J., De Canck, E., Esquivel, D., Thybaut, J. W., Van Der Voort, P., & Marin, G. B. (2013). Silanol-Assisted Aldol Condensation on Aminated Silica: Understanding the Arrangement of Functional Groups. ChemCatChem, 6(1), 255-264. doi:10.1002/cctc.201300742

Yuan, H., Yoo, W.-J., Miyamura, H., & Kobayashi, S. (2012). Discovery of a Metalloenzyme-like Cooperative Catalytic System of Metal Nanoclusters and Catechol Derivatives for the Aerobic Oxidation of Amines. Journal of the American Chemical Society, 134(34), 13970-13973. doi:10.1021/ja306934b

McKittrick, M. W., & Jones, C. W. (2003). Toward Single-Site Functional MaterialsPreparation of Amine-Functionalized Surfaces Exhibiting Site-Isolated Behavior. Chemistry of Materials, 15(5), 1132-1139. doi:10.1021/cm020952z

McKittrick, M. W., & Jones, C. W. (2004). Toward Single-Site, Immobilized Molecular Catalysts:  Site-Isolated Ti Ethylene Polymerization Catalysts Supported on Porous Silica. Journal of the American Chemical Society, 126(10), 3052-3053. doi:10.1021/ja031725g

Zeidan, R. K., Hwang, S.-J., & Davis, M. E. (2006). Multifunctional Heterogeneous Catalysts: SBA-15-Containing Primary Amines and Sulfonic Acids. Angewandte Chemie International Edition, 45(38), 6332-6335. doi:10.1002/anie.200602243

Brunelli, N. A., Venkatasubbaiah, K., & Jones, C. W. (2012). Cooperative Catalysis with Acid–Base Bifunctional Mesoporous Silica: Impact of Grafting and Co-condensation Synthesis Methods on Material Structure and Catalytic Properties. Chemistry of Materials, 24(13), 2433-2442. doi:10.1021/cm300753z

Lauwaert, J., Moschetta, E. G., Van Der Voort, P., Thybaut, J. W., Jones, C. W., & Marin, G. B. (2015). Spatial arrangement and acid strength effects on acid–base cooperatively catalyzed aldol condensation on aminosilica materials. Journal of Catalysis, 325, 19-25. doi:10.1016/j.jcat.2015.02.011

Bass, J. D., Solovyov, A., Pascall, A. J., & Katz, A. (2006). Acid−Base Bifunctional and Dielectric Outer-Sphere Effects in Heterogeneous Catalysis:  A Comparative Investigation of Model Primary Amine Catalysts. Journal of the American Chemical Society, 128(11), 3737-3747. doi:10.1021/ja057395c

Sharma, K. K., Buckley, R. P., & Asefa, T. (2008). Optimizing Acid−Base Bifunctional Mesoporous Catalysts for the Henry Reaction: Effects of the Surface Density and Site Isolation of Functional Groups. Langmuir, 24(24), 14306-14320. doi:10.1021/la8030107

Collier, V. E., Ellebracht, N. C., Lindy, G. I., Moschetta, E. G., & Jones, C. W. (2015). Kinetic and Mechanistic Examination of Acid–Base Bifunctional Aminosilica Catalysts in Aldol and Nitroaldol Condensations. ACS Catalysis, 6(1), 460-468. doi:10.1021/acscatal.5b02398

Ma, T.-Y., Li, H., Deng, Q.-F., Liu, L., Ren, T.-Z., & Yuan, Z.-Y. (2012). Ordered Mesoporous Metal–Organic Frameworks Consisting of Metal Disulfonates. Chemistry of Materials, 24(12), 2253-2255. doi:10.1021/cm301256r

Kim, K. C., Moschetta, E. G., Jones, C. W., & Jang, S. S. (2016). Molecular Dynamics Simulations of Aldol Condensation Catalyzed by Alkylamine-Functionalized Crystalline Silica Surfaces. Journal of the American Chemical Society, 138(24), 7664-7672. doi:10.1021/jacs.6b03309

Brunelli, N. A., & Jones, C. W. (2013). Tuning acid–base cooperativity to create next generation silica-supported organocatalysts. Journal of Catalysis, 308, 60-72. doi:10.1016/j.jcat.2013.05.022

Brunelli, N. A., Didas, S. A., Venkatasubbaiah, K., & Jones, C. W. (2012). Tuning Cooperativity by Controlling the Linker Length of Silica-Supported Amines in Catalysis and CO2 Capture. Journal of the American Chemical Society, 134(34), 13950-13953. doi:10.1021/ja305601g

De Vylder, A., Lauwaert, J., Esquivel, D., Poelman, D., De Clercq, J., Van Der Voort, P., & Thybaut, J. W. (2018). The role of water in the reusability of aminated silica catalysts for aldol reactions. Journal of Catalysis, 361, 51-61. doi:10.1016/j.jcat.2018.02.016

Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:10.1351/pac198557040603

Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126

Mokaya, R., & Jones, W. (1998). The influence of template extraction on the properties of primary amine templated aluminosilicate mesoporous molecular sieves. Journal of Materials Chemistry, 8(12), 2819-2826. doi:10.1039/a806049e

Tanev, P. T., & Pinnavaia, T. J. (1995). A Neutral Templating Route to Mesoporous Molecular Sieves. Science, 267(5199), 865-867. doi:10.1126/science.267.5199.865

Kawahara, K., Hagiwara, Y., Shimojima, A., & Kuroda, K. (2008). Stepwise silylation of double-four-ring (D4R) silicate into a novel spherical siloxane with a defined architecture. Journal of Materials Chemistry, 18(27), 3193. doi:10.1039/b807533f

Haddad, B., Mokhtar, D., Goussem, M., Belarbi, E., Villemin, D., Bresson, S., … Kiefer, J. (2017). Influence of methyl and propyl groups on the vibrational spectra of two imidazolium ionic liquids and their non-ionic precursors. Journal of Molecular Structure, 1134, 582-590. doi:10.1016/j.molstruc.2017.01.008

Rodriguez, I., Iborra, S., Corma, A., Rey, F., & Jordá, J. L. (1999). MCM-41–Quaternary organic tetraalkylammonium hydroxide composites as strong and stable Brønsted base catalysts. Chemical Communications, (7), 593-594. doi:10.1039/a900384c

CLIMENT, M. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316-326. doi:10.1016/j.jcat.2004.04.027

Prout, F. S., Beaucaire, V. D., Dyrkacz, G. R., Koppes, W. M., Kuznicki, R. E., Marlewski, T. A., … Puda, J. M. (1973). Konevenagel Reaction. Kinetic study of the reaction of (+)-3-methyl-cyclohexanone with malononitrile. The Journal of Organic Chemistry, 38(8), 1512-1517. doi:10.1021/jo00948a015

Guyot, J., & Kergomard, A. (1983). Cinétique et mécanisme de la réaction de knoevenagel dans le benzène-2. Tetrahedron, 39(7), 1167-1179. doi:10.1016/s0040-4020(01)91880-0

Lubisch, W., Beckenbach, E., Bopp, S., Hofmann, H.-P., Kartal, A., Kästel, C., … Möller, A. (2003). Benzoylalanine-Derived Ketoamides Carrying Vinylbenzyl Amino Residues:  Discovery of Potent Water-Soluble Calpain Inhibitors with Oral Bioavailability. Journal of Medicinal Chemistry, 46(12), 2404-2412. doi:10.1021/jm0210717

Vlok, N., Malan, S. F., Castagnoli, N., Bergh, J. J., & Petzer, J. P. (2006). Inhibition of monoamine oxidase B by analogues of the adenosine A2A receptor antagonist (E)-8-(3-chlorostyryl)caffeine (CSC). Bioorganic & Medicinal Chemistry, 14(10), 3512-3521. doi:10.1016/j.bmc.2006.01.011

Selvam, C., Jachak, S. M., Thilagavathi, R., & Chakraborti, A. K. (2005). Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters, 15(7), 1793-1797. doi:10.1016/j.bmcl.2005.02.039

Nakayama, K., Ishida, Y., Ohtsuka, M., Kawato, H., Yoshida, K., Yokomizo, Y., … Watkins, W. J. (2003). MexAB-OprM-Specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 1: Discovery and early strategies for lead optimization. Bioorganic & Medicinal Chemistry Letters, 13(23), 4201-4204. doi:10.1016/j.bmcl.2003.07.024

Inagaki, S., Guan, S., Ohsuna, T., & Terasaki, O. (2002). An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 416(6878), 304-307. doi:10.1038/416304a

Jung, J., Jo, C., Cho, K., & Ryoo, R. (2012). Zeolite nanosheet of a single-pore thickness generated by a zeolite-structure-directing surfactant. Journal of Materials Chemistry, 22(11), 4637. doi:10.1039/c2jm16539b

Bellussi, G., Montanari, E., Di Paola, E., Millini, R., Carati, A., Rizzo, C., … Zanardi, S. (2011). ECS-3: A Crystalline Hybrid Organic-Inorganic Aluminosilicate with Open Porosity. Angewandte Chemie International Edition, 51(3), 666-669. doi:10.1002/anie.201105496

Gaona, A., Moreno, J. M., Velty, A., Díaz, U., & Corma, A. (2014). One-pot synthesis of hierarchical porous layered hybrid materials based on aluminosilicate sheets and organic functional pillars. J. Mater. Chem. A, 2(45), 19360-19375. doi:10.1039/c4ta04742g

Knoevenagel, E. (1898). Condensation von Malonsäure mit aromatischen Aldehyden durch Ammoniak und Amine. Berichte der deutschen chemischen Gesellschaft, 31(3), 2596-2619. doi:10.1002/cber.18980310308

Rodriguez, I., Iborra, S., Rey, F., & Corma, A. (2000). Heterogeneized Brönsted base catalysts for fine chemicals production: grafted quaternary organic ammonium hydroxides as catalyst for the production of chromenes and coumarins. Applied Catalysis A: General, 194-195, 241-252. doi:10.1016/s0926-860x(99)00371-3




This item appears in the following Collection(s)

Show full item record