Mostrar el registro sencillo del ítem
dc.contributor.author | Erigoni, Andrea | es_ES |
dc.contributor.author | Hernández Soto, María Consuelo | es_ES |
dc.contributor.author | Rey Garcia, Fernando | es_ES |
dc.contributor.author | Segarra-Almela, Mª De La Candelaria | es_ES |
dc.contributor.author | DÍAZ MORALES, URBANO MANUEL | es_ES |
dc.date.accessioned | 2021-04-17T03:32:18Z | |
dc.date.available | 2021-04-17T03:32:18Z | |
dc.date.issued | 2020-04-01 | es_ES |
dc.identifier.issn | 0920-5861 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165275 | |
dc.description.abstract | [EN] New base hybrid catalysts, based on silyl-derivatives of molecules carrying amino, diamino, pyrrolidine, pyrazolium and imidazolium functionalities have been successfully achieved through post synthetic grafting onto M41S-type support. Different characterization techniques were implemented to study the characteristics of the materials, such as elemental analysis, solid state MAS NMR and FTIR spectroscopies, X-ray diffraction (XRD), thermogravimetric and differential thermal analyses (TGA-DTA) and textural properties through N-2 physisorption analysis. The catalytic activity and recyclability of these compounds as base catalysts was demonstrated for C-C bond forming reactions such as Knoevenagel condensations and Michael additions rationalizing the differences observed as function of the reaction mechanisms. An enamine mechanism was proposed for Knoevenagel condensations and an enolate mechanism for Michael additions. | es_ES |
dc.description.sponsorship | The authors are grateful for financial support from the Spanish Government by MAT2017-82288-C2-1-P and Severo Ochoa Excellence ProgramSEV-2016-0683. The authors thank the MULTY2HYCAT (EUHorizon 2020 funded project under grant agreement no. 720783). A. E. acknowledges "La Caixa" foundation for PhD scholarship. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Catalysis Today | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Organic-inorganic hybrid catalysts | es_ES |
dc.subject | Base sites | es_ES |
dc.subject | Mesoporous and microporous materials | es_ES |
dc.subject | C-C bond forming reactions | es_ES |
dc.title | Highly active hybrid mesoporous silica-supported base organocatalysts for C-C bond formation | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1016/j.cattod.2019.09.041 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Erigoni, A.; Hernández Soto, MC.; Rey Garcia, F.; Segarra-Almela, MDLC.; Díaz Morales, UM. (2020). Highly active hybrid mesoporous silica-supported base organocatalysts for C-C bond formation. Catalysis Today. 345:227-236. https://doi.org/10.1016/j.cattod.2019.09.041 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 8th Czech-Italian-Spanish Conference on Molecular Sieves and Catalysis (CIS8) | es_ES |
dc.relation.conferencedate | Junio 11-14,2019 | es_ES |
dc.relation.conferenceplace | Amantea, Italy | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cattod.2019.09.041 | es_ES |
dc.description.upvformatpinicio | 227 | es_ES |
dc.description.upvformatpfin | 236 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 345 | es_ES |
dc.relation.pasarela | S\406710 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Díaz, U., Brunel, D., & Corma, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews, 42(9), 4083. doi:10.1039/c2cs35385g | es_ES |
dc.description.references | Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b | es_ES |
dc.description.references | Loy, D. A., & Shea, K. J. (1995). Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials. Chemical Reviews, 95(5), 1431-1442. doi:10.1021/cr00037a013 | es_ES |
dc.description.references | Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075 | es_ES |
dc.description.references | Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m | es_ES |
dc.description.references | Vallé, K., Belleville, P., Pereira, F., & Sanchez, C. (2006). Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer. Nature Materials, 5(2), 107-111. doi:10.1038/nmat1570 | es_ES |
dc.description.references | Boury, B., & Corriu, R. J. P. (2002). Auto-organisation of hybrid organic–inorganic materials prepared by sol–gel chemistry. Chemical Communications, (8), 795-802. doi:10.1039/b109040m | es_ES |
dc.description.references | Mehdi, A., Reye, C., & Corriu, R. (2011). From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chem. Soc. Rev., 40(2), 563-574. doi:10.1039/b920516k | es_ES |
dc.description.references | Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k | es_ES |
dc.description.references | Sanchez, C., Rozes, L., Ribot, F., Laberty-Robert, C., Grosso, D., Sassoye, C., … Nicole, L. (2010). «Chimie douce»: A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. Comptes Rendus Chimie, 13(1-2), 3-39. doi:10.1016/j.crci.2009.06.001 | es_ES |
dc.description.references | Park, J.-W., Park, Y. J., & Jun, C.-H. (2011). Post-grafting of silica surfaces with pre-functionalized organosilanes: new synthetic equivalents of conventional trialkoxysilanes. Chemical Communications, 47(17), 4860. doi:10.1039/c1cc00038a | es_ES |
dc.description.references | Lauwaert, J., De Canck, E., Esquivel, D., Thybaut, J. W., Van Der Voort, P., & Marin, G. B. (2013). Silanol-Assisted Aldol Condensation on Aminated Silica: Understanding the Arrangement of Functional Groups. ChemCatChem, 6(1), 255-264. doi:10.1002/cctc.201300742 | es_ES |
dc.description.references | Yuan, H., Yoo, W.-J., Miyamura, H., & Kobayashi, S. (2012). Discovery of a Metalloenzyme-like Cooperative Catalytic System of Metal Nanoclusters and Catechol Derivatives for the Aerobic Oxidation of Amines. Journal of the American Chemical Society, 134(34), 13970-13973. doi:10.1021/ja306934b | es_ES |
dc.description.references | McKittrick, M. W., & Jones, C. W. (2003). Toward Single-Site Functional MaterialsPreparation of Amine-Functionalized Surfaces Exhibiting Site-Isolated Behavior. Chemistry of Materials, 15(5), 1132-1139. doi:10.1021/cm020952z | es_ES |
dc.description.references | McKittrick, M. W., & Jones, C. W. (2004). Toward Single-Site, Immobilized Molecular Catalysts: Site-Isolated Ti Ethylene Polymerization Catalysts Supported on Porous Silica. Journal of the American Chemical Society, 126(10), 3052-3053. doi:10.1021/ja031725g | es_ES |
dc.description.references | Zeidan, R. K., Hwang, S.-J., & Davis, M. E. (2006). Multifunctional Heterogeneous Catalysts: SBA-15-Containing Primary Amines and Sulfonic Acids. Angewandte Chemie International Edition, 45(38), 6332-6335. doi:10.1002/anie.200602243 | es_ES |
dc.description.references | Brunelli, N. A., Venkatasubbaiah, K., & Jones, C. W. (2012). Cooperative Catalysis with Acid–Base Bifunctional Mesoporous Silica: Impact of Grafting and Co-condensation Synthesis Methods on Material Structure and Catalytic Properties. Chemistry of Materials, 24(13), 2433-2442. doi:10.1021/cm300753z | es_ES |
dc.description.references | Lauwaert, J., Moschetta, E. G., Van Der Voort, P., Thybaut, J. W., Jones, C. W., & Marin, G. B. (2015). Spatial arrangement and acid strength effects on acid–base cooperatively catalyzed aldol condensation on aminosilica materials. Journal of Catalysis, 325, 19-25. doi:10.1016/j.jcat.2015.02.011 | es_ES |
dc.description.references | Bass, J. D., Solovyov, A., Pascall, A. J., & Katz, A. (2006). Acid−Base Bifunctional and Dielectric Outer-Sphere Effects in Heterogeneous Catalysis: A Comparative Investigation of Model Primary Amine Catalysts. Journal of the American Chemical Society, 128(11), 3737-3747. doi:10.1021/ja057395c | es_ES |
dc.description.references | Sharma, K. K., Buckley, R. P., & Asefa, T. (2008). Optimizing Acid−Base Bifunctional Mesoporous Catalysts for the Henry Reaction: Effects of the Surface Density and Site Isolation of Functional Groups. Langmuir, 24(24), 14306-14320. doi:10.1021/la8030107 | es_ES |
dc.description.references | Collier, V. E., Ellebracht, N. C., Lindy, G. I., Moschetta, E. G., & Jones, C. W. (2015). Kinetic and Mechanistic Examination of Acid–Base Bifunctional Aminosilica Catalysts in Aldol and Nitroaldol Condensations. ACS Catalysis, 6(1), 460-468. doi:10.1021/acscatal.5b02398 | es_ES |
dc.description.references | Ma, T.-Y., Li, H., Deng, Q.-F., Liu, L., Ren, T.-Z., & Yuan, Z.-Y. (2012). Ordered Mesoporous Metal–Organic Frameworks Consisting of Metal Disulfonates. Chemistry of Materials, 24(12), 2253-2255. doi:10.1021/cm301256r | es_ES |
dc.description.references | Kim, K. C., Moschetta, E. G., Jones, C. W., & Jang, S. S. (2016). Molecular Dynamics Simulations of Aldol Condensation Catalyzed by Alkylamine-Functionalized Crystalline Silica Surfaces. Journal of the American Chemical Society, 138(24), 7664-7672. doi:10.1021/jacs.6b03309 | es_ES |
dc.description.references | Brunelli, N. A., & Jones, C. W. (2013). Tuning acid–base cooperativity to create next generation silica-supported organocatalysts. Journal of Catalysis, 308, 60-72. doi:10.1016/j.jcat.2013.05.022 | es_ES |
dc.description.references | Brunelli, N. A., Didas, S. A., Venkatasubbaiah, K., & Jones, C. W. (2012). Tuning Cooperativity by Controlling the Linker Length of Silica-Supported Amines in Catalysis and CO2 Capture. Journal of the American Chemical Society, 134(34), 13950-13953. doi:10.1021/ja305601g | es_ES |
dc.description.references | De Vylder, A., Lauwaert, J., Esquivel, D., Poelman, D., De Clercq, J., Van Der Voort, P., & Thybaut, J. W. (2018). The role of water in the reusability of aminated silica catalysts for aldol reactions. Journal of Catalysis, 361, 51-61. doi:10.1016/j.jcat.2018.02.016 | es_ES |
dc.description.references | Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:10.1351/pac198557040603 | es_ES |
dc.description.references | Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126 | es_ES |
dc.description.references | Mokaya, R., & Jones, W. (1998). The influence of template extraction on the properties of primary amine templated aluminosilicate mesoporous molecular sieves. Journal of Materials Chemistry, 8(12), 2819-2826. doi:10.1039/a806049e | es_ES |
dc.description.references | Tanev, P. T., & Pinnavaia, T. J. (1995). A Neutral Templating Route to Mesoporous Molecular Sieves. Science, 267(5199), 865-867. doi:10.1126/science.267.5199.865 | es_ES |
dc.description.references | Kawahara, K., Hagiwara, Y., Shimojima, A., & Kuroda, K. (2008). Stepwise silylation of double-four-ring (D4R) silicate into a novel spherical siloxane with a defined architecture. Journal of Materials Chemistry, 18(27), 3193. doi:10.1039/b807533f | es_ES |
dc.description.references | Haddad, B., Mokhtar, D., Goussem, M., Belarbi, E., Villemin, D., Bresson, S., … Kiefer, J. (2017). Influence of methyl and propyl groups on the vibrational spectra of two imidazolium ionic liquids and their non-ionic precursors. Journal of Molecular Structure, 1134, 582-590. doi:10.1016/j.molstruc.2017.01.008 | es_ES |
dc.description.references | Rodriguez, I., Iborra, S., Corma, A., Rey, F., & Jordá, J. L. (1999). MCM-41–Quaternary organic tetraalkylammonium hydroxide composites as strong and stable Brønsted base catalysts. Chemical Communications, (7), 593-594. doi:10.1039/a900384c | es_ES |
dc.description.references | CLIMENT, M. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316-326. doi:10.1016/j.jcat.2004.04.027 | es_ES |
dc.description.references | Prout, F. S., Beaucaire, V. D., Dyrkacz, G. R., Koppes, W. M., Kuznicki, R. E., Marlewski, T. A., … Puda, J. M. (1973). Konevenagel Reaction. Kinetic study of the reaction of (+)-3-methyl-cyclohexanone with malononitrile. The Journal of Organic Chemistry, 38(8), 1512-1517. doi:10.1021/jo00948a015 | es_ES |
dc.description.references | Guyot, J., & Kergomard, A. (1983). Cinétique et mécanisme de la réaction de knoevenagel dans le benzène-2. Tetrahedron, 39(7), 1167-1179. doi:10.1016/s0040-4020(01)91880-0 | es_ES |
dc.description.references | Lubisch, W., Beckenbach, E., Bopp, S., Hofmann, H.-P., Kartal, A., Kästel, C., … Möller, A. (2003). Benzoylalanine-Derived Ketoamides Carrying Vinylbenzyl Amino Residues: Discovery of Potent Water-Soluble Calpain Inhibitors with Oral Bioavailability. Journal of Medicinal Chemistry, 46(12), 2404-2412. doi:10.1021/jm0210717 | es_ES |
dc.description.references | Vlok, N., Malan, S. F., Castagnoli, N., Bergh, J. J., & Petzer, J. P. (2006). Inhibition of monoamine oxidase B by analogues of the adenosine A2A receptor antagonist (E)-8-(3-chlorostyryl)caffeine (CSC). Bioorganic & Medicinal Chemistry, 14(10), 3512-3521. doi:10.1016/j.bmc.2006.01.011 | es_ES |
dc.description.references | Selvam, C., Jachak, S. M., Thilagavathi, R., & Chakraborti, A. K. (2005). Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters, 15(7), 1793-1797. doi:10.1016/j.bmcl.2005.02.039 | es_ES |
dc.description.references | Nakayama, K., Ishida, Y., Ohtsuka, M., Kawato, H., Yoshida, K., Yokomizo, Y., … Watkins, W. J. (2003). MexAB-OprM-Specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 1: Discovery and early strategies for lead optimization. Bioorganic & Medicinal Chemistry Letters, 13(23), 4201-4204. doi:10.1016/j.bmcl.2003.07.024 | es_ES |
dc.description.references | Inagaki, S., Guan, S., Ohsuna, T., & Terasaki, O. (2002). An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 416(6878), 304-307. doi:10.1038/416304a | es_ES |
dc.description.references | Jung, J., Jo, C., Cho, K., & Ryoo, R. (2012). Zeolite nanosheet of a single-pore thickness generated by a zeolite-structure-directing surfactant. Journal of Materials Chemistry, 22(11), 4637. doi:10.1039/c2jm16539b | es_ES |
dc.description.references | Bellussi, G., Montanari, E., Di Paola, E., Millini, R., Carati, A., Rizzo, C., … Zanardi, S. (2011). ECS-3: A Crystalline Hybrid Organic-Inorganic Aluminosilicate with Open Porosity. Angewandte Chemie International Edition, 51(3), 666-669. doi:10.1002/anie.201105496 | es_ES |
dc.description.references | Gaona, A., Moreno, J. M., Velty, A., Díaz, U., & Corma, A. (2014). One-pot synthesis of hierarchical porous layered hybrid materials based on aluminosilicate sheets and organic functional pillars. J. Mater. Chem. A, 2(45), 19360-19375. doi:10.1039/c4ta04742g | es_ES |
dc.description.references | Knoevenagel, E. (1898). Condensation von Malonsäure mit aromatischen Aldehyden durch Ammoniak und Amine. Berichte der deutschen chemischen Gesellschaft, 31(3), 2596-2619. doi:10.1002/cber.18980310308 | es_ES |
dc.description.references | Rodriguez, I., Iborra, S., Rey, F., & Corma, A. (2000). Heterogeneized Brönsted base catalysts for fine chemicals production: grafted quaternary organic ammonium hydroxides as catalyst for the production of chromenes and coumarins. Applied Catalysis A: General, 194-195, 241-252. doi:10.1016/s0926-860x(99)00371-3 | es_ES |