- -

Photocatalytic CO2 Reduction to C2+Products

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Photocatalytic CO2 Reduction to C2+Products

Show full item record

Albero-Sancho, J.; Peng, Y.; García Gómez, H. (2020). Photocatalytic CO2 Reduction to C2+Products. ACS Catalysis. 10(10):5734-5749. https://doi.org/10.1021/acscatal.0c00478

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165276

Files in this item

Item Metadata

Title: Photocatalytic CO2 Reduction to C2+Products
Author: Albero-Sancho, Josep Peng, Yong García Gómez, Hermenegildo
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] There is a considerable interest in the development of photocatalytic CO2 conversion by sunlight, since this process has similarities with natural photosynthesis on which life on Earth is based. At the moment, most ...[+]
Subjects: Photocatalysis , CO2 reduction , Solar fuel , Selectivity , C2+products
Copyrigths: Reserva de todos los derechos
Source:
ACS Catalysis. (issn: 2155-5435 )
DOI: 10.1021/acscatal.0c00478
Publisher:
American Chemical Society
Publisher version: https://doi.org/10.1021/acscatal.0c00478
Project ID:
GENERALITAT VALENCIANA/PROMETEO/2017/083
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/
Description: This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acscatal.0c00478
Thanks:
Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and No. CTQ2018-89237-CO2R1) and Generalitat Valenciana (Prometeo 2017/83) is gratefully acknowledged.
Type: Artículo

References

Low, J., Cheng, B., & Yu, J. (2017). Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science, 392, 658-686. doi:10.1016/j.apsusc.2016.09.093

Zeng, S., Kar, P., Thakur, U. K., & Shankar, K. (2018). A review on photocatalytic CO2reduction using perovskite oxide nanomaterials. Nanotechnology, 29(5), 052001. doi:10.1088/1361-6528/aa9fb1

Ola, O., & Maroto-Valer, M. M. (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 16-42. doi:10.1016/j.jphotochemrev.2015.06.001 [+]
Low, J., Cheng, B., & Yu, J. (2017). Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science, 392, 658-686. doi:10.1016/j.apsusc.2016.09.093

Zeng, S., Kar, P., Thakur, U. K., & Shankar, K. (2018). A review on photocatalytic CO2reduction using perovskite oxide nanomaterials. Nanotechnology, 29(5), 052001. doi:10.1088/1361-6528/aa9fb1

Ola, O., & Maroto-Valer, M. M. (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 16-42. doi:10.1016/j.jphotochemrev.2015.06.001

Tachibana, Y., Vayssieres, L., & Durrant, J. R. (2012). Artificial photosynthesis for solar water-splitting. Nature Photonics, 6(8), 511-518. doi:10.1038/nphoton.2012.175

Gust, D., Moore, T. A., & Moore, A. L. (2009). Solar Fuels via Artificial Photosynthesis. Accounts of Chemical Research, 42(12), 1890-1898. doi:10.1021/ar900209b

Zhang, T., & Lin, W. (2014). Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev., 43(16), 5982-5993. doi:10.1039/c4cs00103f

Hao, Y., & Steinfeld, A. (2017). Fuels from water, CO 2 and solar energy. Science Bulletin, 62(16), 1099-1101. doi:10.1016/j.scib.2017.08.013

Saeidi, S., Amin, N. A. S., & Rahimpour, M. R. (2014). Hydrogenation of CO2 to value-added products—A review and potential future developments. Journal of CO2 Utilization, 5, 66-81. doi:10.1016/j.jcou.2013.12.005

Ma, J., Sun, N., Zhang, X., Zhao, N., Xiao, F., Wei, W., & Sun, Y. (2009). A short review of catalysis for CO2 conversion. Catalysis Today, 148(3-4), 221-231. doi:10.1016/j.cattod.2009.08.015

Huang, C.-H., & Tan, C.-S. (2014). A Review: CO2 Utilization. Aerosol and Air Quality Research, 14(2), 480-499. doi:10.4209/aaqr.2013.10.0326

Jia, J., Wang, H., Lu, Z., O’Brien, P. G., Ghoussoub, M., Duchesne, P., … Ozin, G. A. (2017). Photothermal Catalysis: Photothermal Catalyst Engineering: Hydrogenation of Gaseous CO2 with High Activity and Tailored Selectivity (Adv. Sci. 10/2017). Advanced Science, 4(10). doi:10.1002/advs.201770052

Hurtado, L., Natividad, R., & García, H. (2016). Photocatalytic activity of Cu2O supported on multi layers graphene for CO2 reduction by water under batch and continuous flow. Catalysis Communications, 84, 30-35. doi:10.1016/j.catcom.2016.05.025

Wu, J., Huang, Y., Ye, W., & Li, Y. (2017). CO2Reduction: From the Electrochemical to Photochemical Approach. Advanced Science, 4(11), 1700194. doi:10.1002/advs.201700194

Seo, H., Katcher, M. H., & Jamison, T. F. (2016). Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow. Nature Chemistry, 9(5), 453-456. doi:10.1038/nchem.2690

Vu, N., Kaliaguine, S., & Do, T. (2019). Critical Aspects and Recent Advances in Structural Engineering of Photocatalysts for Sunlight‐Driven Photocatalytic Reduction of CO 2 into Fuels. Advanced Functional Materials, 29(31), 1901825. doi:10.1002/adfm.201901825

Niu, J., Shen, S., Zhou, L., Liu, Z., Feng, P., Ou, X., & Qiang, Y. (2016). Synthesis and hydrogenation of anatase TiO2 microspheres composed of porous single crystals for significantly improved photocatalytic activity. RSC Advances, 6(67), 62907-62910. doi:10.1039/c6ra12053a

Neaţu, Ş., Maciá-Agulló, J. A., Concepción, P., & Garcia, H. (2014). Gold–Copper Nanoalloys Supported on TiO2 as Photocatalysts for CO2 Reduction by Water. Journal of the American Chemical Society, 136(45), 15969-15976. doi:10.1021/ja506433k

Xiong, Z., Lei, Z., Kuang, C.-C., Chen, X., Gong, B., Zhao, Y., … Wu, J. C. S. (2017). Selective photocatalytic reduction of CO2 into CH4 over Pt-Cu2O TiO2 nanocrystals: The interaction between Pt and Cu2O cocatalysts. Applied Catalysis B: Environmental, 202, 695-703. doi:10.1016/j.apcatb.2016.10.001

Zhai, Q., Xie, S., Fan, W., Zhang, Q., Wang, Y., Deng, W., & Wang, Y. (2013). Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Co-catalysts with a Core-Shell Structure. Angewandte Chemie International Edition, 52(22), 5776-5779. doi:10.1002/anie.201301473

Wei, W., & Jinlong, G. (2010). Methanation of carbon dioxide: an overview. Frontiers of Chemical Science and Engineering, 5(1), 2-10. doi:10.1007/s11705-010-0528-3

Frontera, P., Macario, A., Ferraro, M., & Antonucci, P. (2017). Supported Catalysts for CO2 Methanation: A Review. Catalysts, 7(12), 59. doi:10.3390/catal7020059

Mateo, D., Albero, J., & García, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 224, 563-571. doi:10.1016/j.apcatb.2017.10.071

Zhao, J., Yang, Q., Shi, R., Waterhouse, G. I. N., Zhang, X., Wu, L.-Z., … Zhang, T. (2020). FeO–CeO2 nanocomposites: an efficient and highly selective catalyst system for photothermal CO2 reduction to CO. NPG Asia Materials, 12(1). doi:10.1038/s41427-019-0171-5

Xiao, J.-D., & Jiang, H.-L. (2018). Metal–Organic Frameworks for Photocatalysis and Photothermal Catalysis. Accounts of Chemical Research, 52(2), 356-366. doi:10.1021/acs.accounts.8b00521

Wang, C., Sun, Z., Zheng, Y., & Hu, Y. H. (2019). Recent progress in visible light photocatalytic conversion of carbon dioxide. Journal of Materials Chemistry A, 7(3), 865-887. doi:10.1039/c8ta09865d

Voiry, D., Shin, H. S., Loh, K. P., & Chhowalla, M. (2018). Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nature Reviews Chemistry, 2(1). doi:10.1038/s41570-017-0105

Lee, Y. Y., Jung, H. S., & Kang, Y. T. (2017). A review: Effect of nanostructures on photocatalytic CO 2 conversion over metal oxides and compound semiconductors. Journal of CO2 Utilization, 20, 163-177. doi:10.1016/j.jcou.2017.05.019

Yang, M.-Q., & Xu, Y.-J. (2016). Photocatalytic conversion of CO2 over graphene-based composites: current status and future perspective. Nanoscale Horizons, 1(3), 185-200. doi:10.1039/c5nh00113g

Peng, C., Reid, G., Wang, H., & Hu, P. (2017). Perspective: Photocatalytic reduction of CO2 to solar fuels over semiconductors. The Journal of Chemical Physics, 147(3), 030901. doi:10.1063/1.4985624

Lei, Z., Xue, Y., Chen, W., Qiu, W., Zhang, Y., Horike, S., & Tang, L. (2018). MOFs-Based Heterogeneous Catalysts: New Opportunities for Energy-Related CO2 Conversion. Advanced Energy Materials, 8(32), 1801587. doi:10.1002/aenm.201801587

Sun, Z., Talreja, N., Tao, H., Texter, J., Muhler, M., Strunk, J., & Chen, J. (2018). Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angewandte Chemie International Edition, 57(26), 7610-7627. doi:10.1002/anie.201710509

Chen, G., Waterhouse, G. I. N., Shi, R., Zhao, J., Li, Z., Wu, L., … Zhang, T. (2019). From Solar Energy to Fuels: Recent Advances in Light‐Driven C 1 Chemistry. Angewandte Chemie International Edition, 58(49), 17528-17551. doi:10.1002/anie.201814313

U.S Energy Information Administration. https://www.eia.gov/.

Jouny, M., Luc, W., & Jiao, F. (2018). General Techno-Economic Analysis of CO2 Electrolysis Systems. Industrial & Engineering Chemistry Research, 57(6), 2165-2177. doi:10.1021/acs.iecr.7b03514

Xia, X.-H., Jia, Z.-J., Yu, Y., Liang, Y., Wang, Z., & Ma, L.-L. (2007). Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon, 45(4), 717-721. doi:10.1016/j.carbon.2006.11.028

Lee, C.-W., Antoniou Kourounioti, R., Wu, J. C. S., Murchie, E., Maroto-Valer, M., Jensen, O. E., … Ruban, A. (2014). Photocatalytic conversion of CO2 to hydrocarbons by light-harvesting complex assisted Rh-doped TiO2 photocatalyst. Journal of CO2 Utilization, 5, 33-40. doi:10.1016/j.jcou.2013.12.002

Shown, I., Hsu, H.-C., Chang, Y.-C., Lin, C.-H., Roy, P. K., Ganguly, A., … Chen, K.-H. (2014). Highly Efficient Visible Light Photocatalytic Reduction of CO2 to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide. Nano Letters, 14(11), 6097-6103. doi:10.1021/nl503609v

Han, Q., Zhou, Y., Tang, L., Li, P., Tu, W., Li, L., … Zou, Z. (2016). Synthesis of single-crystalline, porous TaON microspheres toward visible-light photocatalytic conversion of CO2 into liquid hydrocarbon fuels. RSC Advances, 6(93), 90792-90796. doi:10.1039/c6ra19368d

Zhang, X., Han, F., Shi, B., Farsinezhad, S., Dechaine, G. P., & Shankar, K. (2012). Photocatalytic Conversion of Diluted CO2into Light Hydrocarbons Using Periodically Modulated Multiwalled Nanotube Arrays. Angewandte Chemie International Edition, 51(51), 12732-12735. doi:10.1002/anie.201205619

Chen, G., Gao, R., Zhao, Y., Li, Z., Waterhouse, G. I. N., Shi, R., … Zhang, T. (2017). Alumina‐Supported CoFe Alloy Catalysts Derived from Layered‐Double‐Hydroxide Nanosheets for Efficient Photothermal CO 2 Hydrogenation to Hydrocarbons. Advanced Materials, 30(3), 1704663. doi:10.1002/adma.201704663

Kim, W., Seok, T., & Choi, W. (2012). Nafion layer-enhanced photosynthetic conversion of CO2 into hydrocarbons on TiO2 nanoparticles. Energy & Environmental Science, 5(3), 6066. doi:10.1039/c2ee03338k

Park, H., Ou, H.-H., Colussi, A. J., & Hoffmann, M. R. (2015). Artificial Photosynthesis of C1–C3 Hydrocarbons from Water and CO2 on Titanate Nanotubes Decorated with Nanoparticle Elemental Copper and CdS Quantum Dots. The Journal of Physical Chemistry A, 119(19), 4658-4666. doi:10.1021/jp511329d

Liu, L., Puga, A. V., Cored, J., Concepción, P., Pérez-Dieste, V., García, H., & Corma, A. (2018). Sunlight-assisted hydrogenation of CO 2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@C nanocomposites. Applied Catalysis B: Environmental, 235, 186-196. doi:10.1016/j.apcatb.2018.04.060

Sorcar, S., Thompson, J., Hwang, Y., Park, Y. H., Majima, T., Grimes, C. A., … In, S.-I. (2018). High-rate solar-light photoconversion of CO2 to fuel: controllable transformation from C1 to C2 products. Energy & Environmental Science, 11(11), 3183-3193. doi:10.1039/c8ee00983j

Billo, T., Fu, F.-Y., Raghunath, P., Shown, I., Chen, W.-F., Lien, H.-T., … Chen, K.-H. (2017). Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction. Small, 14(2), 1702928. doi:10.1002/smll.201702928

Sun, S., Watanabe, M., Wu, J., An, Q., & Ishihara, T. (2018). Ultrathin WO3·0.33H2O Nanotubes for CO2 Photoreduction to Acetate with High Selectivity. Journal of the American Chemical Society, 140(20), 6474-6482. doi:10.1021/jacs.8b03316

Gellé, A., Jin, T., de la Garza, L., Price, G. D., Besteiro, L. V., & Moores, A. (2019). Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chemical Reviews, 120(2), 986-1041. doi:10.1021/acs.chemrev.9b00187

Yu, S., Wilson, A. J., Heo, J., & Jain, P. K. (2018). Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. Nano Letters, 18(4), 2189-2194. doi:10.1021/acs.nanolett.7b05410

Chen, Q., Chen, X., Fang, M., Chen, J., Li, Y., Xie, Z., … Zheng, L. (2019). Photo-induced Au–Pd alloying at TiO2 {101} facets enables robust CO2 photocatalytic reduction into hydrocarbon fuels. Journal of Materials Chemistry A, 7(3), 1334-1340. doi:10.1039/c8ta09412h

Kibria, M. G., Edwards, J. P., Gabardo, C. M., Dinh, C., Seifitokaldani, A., Sinton, D., & Sargent, E. H. (2019). Electrochemical CO 2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. Advanced Materials, 31(31), 1807166. doi:10.1002/adma.201807166

Fu, J., Jiang, K., Qiu, X., Yu, J., & Liu, M. (2020). Product selectivity of photocatalytic CO2 reduction reactions. Materials Today, 32, 222-243. doi:10.1016/j.mattod.2019.06.009

Habisreutinger, S. N., Schmidt-Mende, L., & Stolarczyk, J. K. (2013). Photocatalytic Reduction of CO2on TiO2and Other Semiconductors. Angewandte Chemie International Edition, 52(29), 7372-7408. doi:10.1002/anie.201207199

Unruh, D., Pabst, K., & Schaub, G. (2010). Fischer−Tropsch Synfuels from Biomass: Maximizing Carbon Efficiency and Hydrocarbon Yield. Energy & Fuels, 24(4), 2634-2641. doi:10.1021/ef9009185

Klerk, A. l. In Fischer–Tropsch Refining; de Klerk, A., Ed. 2011; pp 73–103.

Jager, B. In Studies in Surfactant Science and Catalysis, Vol. 119; Parmaliana, A., Sanfilippo, D., Frusteri, F., Vaccari, A., Arena, F., Eds. Elsevier, 1998; pp 25–34.

Gu, B., Khodakov, A. Y., & Ordomsky, V. V. (2018). Selectivity shift from paraffins to α-olefins in low temperature Fischer–Tropsch synthesis in the presence of carboxylic acids. Chemical Communications, 54(19), 2345-2348. doi:10.1039/c7cc08692j

Brady, R. C., & Pettit, R. (1981). Mechanism of the Fischer-Tropsch reaction. The chain propagation step. Journal of the American Chemical Society, 103(5), 1287-1289. doi:10.1021/ja00395a081

Zhang, Q., Deng, W., & Wang, Y. (2013). Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis. Journal of Energy Chemistry, 22(1), 27-38. doi:10.1016/s2095-4956(13)60003-0

Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., & Gu, S. (2014). A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol., 4(8), 2210-2229. doi:10.1039/c4cy00327f

Yue, W., Randorn, C., Attidekou, P. S., Su, Z., Irvine, J. T. S., & Zhou, W. (2009). Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2. Advanced Functional Materials, 19(17), 2826-2833. doi:10.1002/adfm.200900658

Blankenship, R. E. Molecular Mechanims of Photosynthesis, 2nd Edition; Wiley Blackwell, 2002; Vol. 7, pp d765–d783.

Ran, J., Jaroniec, M., & Qiao, S. (2018). Cocatalysts in Semiconductor‐based Photocatalytic CO 2 Reduction: Achievements, Challenges, and Opportunities. Advanced Materials, 30(7), 1704649. doi:10.1002/adma.201704649

Ran, J., Zhang, J., Yu, J., Jaroniec, M., & Qiao, S. Z. (2014). Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev., 43(22), 7787-7812. doi:10.1039/c3cs60425j

Du, H., Williams, C. T., Ebner, A. D., & Ritter, J. A. (2010). In Situ FTIR Spectroscopic Analysis of Carbonate Transformations during Adsorption and Desorption of CO2 in K-Promoted HTlc. Chemistry of Materials, 22(11), 3519-3526. doi:10.1021/cm100703e

Panagiotopoulou, P., & Kondarides, D. I. (2009). Effects of alkali promotion of TiO2 on the chemisorptive properties and water–gas shift activity of supported noble metal catalysts. Journal of Catalysis, 267(1), 57-66. doi:10.1016/j.jcat.2009.07.014

Hölzl, J.; Schulte, F. K. Work Function of Metals, Vol. 85; Springer: Berlin, 1979; pp 1–150.

D’Arienzo, M., Carbajo, J., Bahamonde, A., Crippa, M., Polizzi, S., Scotti, R., … Morazzoni, F. (2011). Photogenerated Defects in Shape-Controlled TiO2 Anatase Nanocrystals: A Probe To Evaluate the Role of Crystal Facets in Photocatalytic Processes. Journal of the American Chemical Society, 133(44), 17652-17661. doi:10.1021/ja204838s

Kong, M., Li, Y., Chen, X., Tian, T., Fang, P., Zheng, F., & Zhao, X. (2011). Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. Journal of the American Chemical Society, 133(41), 16414-16417. doi:10.1021/ja207826q

Nowotny, M. K., Sheppard, L. R., Bak, T., & Nowotny, J. (2008). Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts. The Journal of Physical Chemistry C, 112(14), 5275-5300. doi:10.1021/jp077275m

Bai, S., Zhang, N., Gao, C., & Xiong, Y. (2018). Defect engineering in photocatalytic materials. Nano Energy, 53, 296-336. doi:10.1016/j.nanoen.2018.08.058

Sorescu, D. C., Al-Saidi, W. A., & Jordan, K. D. (2011). CO2 adsorption on TiO2(101) anatase: A dispersion-corrected density functional theory study. The Journal of Chemical Physics, 135(12), 124701. doi:10.1063/1.3638181

Yin, W.-J., Wen, B., Bandaru, S., Krack, M., Lau, M., & Liu, L.-M. (2016). The Effect of Excess Electron and hole on CO2 Adsorption and Activation on Rutile (110) surface. Scientific Reports, 6(1). doi:10.1038/srep23298

Deskins, N. A., Rousseau, R., & Dupuis, M. (2010). Defining the Role of Excess Electrons in the Surface Chemistry of TiO2. The Journal of Physical Chemistry C, 114(13), 5891-5897. doi:10.1021/jp101155t

Razzaq, A., Sinhamahapatra, A., Kang, T.-H., Grimes, C. A., Yu, J.-S., & In, S.-I. (2017). Efficient solar light photoreduction of CO 2 to hydrocarbon fuels via magnesiothermally reduced TiO 2 photocatalyst. Applied Catalysis B: Environmental, 215, 28-35. doi:10.1016/j.apcatb.2017.05.028

Liu, J., Bai, H., Wang, Y., Liu, Z., Zhang, X., & Sun, D. D. (2010). Self-Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two-Phase Interface and Their Anti-Recombination in Photocatalytic Applications. Advanced Functional Materials, 20(23), 4175-4181. doi:10.1002/adfm.201001391

Tu, W., Zhou, Y., Liu, Q., Yan, S., Bao, S., Wang, X., … Zou, Z. (2012). An In Situ Simultaneous Reduction-Hydrolysis Technique for Fabrication of TiO2-Graphene 2D Sandwich-Like Hybrid Nanosheets: Graphene-Promoted Selectivity of Photocatalytic-Driven Hydrogenation and Coupling of CO2into Methane and Ethane. Advanced Functional Materials, 23(14), 1743-1749. doi:10.1002/adfm.201202349

Chen, X., Liu, L., Yu, P. Y., & Mao, S. S. (2011). Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science, 331(6018), 746-750. doi:10.1126/science.1200448

Hou, W., & Cronin, S. B. (2012). A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Advanced Functional Materials, 23(13), 1612-1619. doi:10.1002/adfm.201202148

Zhang, X., Chen, Y. L., Liu, R.-S., & Tsai, D. P. (2013). Plasmonic photocatalysis. Reports on Progress in Physics, 76(4), 046401. doi:10.1088/0034-4885/76/4/046401

Hou, W., Hung, W. H., Pavaskar, P., Goeppert, A., Aykol, M., & Cronin, S. B. (2011). Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions. ACS Catalysis, 1(8), 929-936. doi:10.1021/cs2001434

Montes-Navajas, P., Serra, M., & Garcia, H. (2013). Influence of the irradiation wavelength on the photocatalytic activity of Au–Pt nanoalloys supported on TiO2 for hydrogen generation from water. Catalysis Science & Technology, 3(9), 2252. doi:10.1039/c3cy00102d

Liu, C., Han, X., Xie, S., Kuang, Q., Wang, X., Jin, M., … Zheng, L. (2012). Enhancing the Photocatalytic Activity of Anatase TiO2by Improving the Specific Facet-Induced Spontaneous Separation of Photogenerated Electrons and Holes. Chemistry - An Asian Journal, 8(1), 282-289. doi:10.1002/asia.201200886

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record