Mostrar el registro sencillo del ítem
dc.contributor.author | Albero-Sancho, Josep![]() |
es_ES |
dc.contributor.author | Peng, Yong![]() |
es_ES |
dc.contributor.author | García Gómez, Hermenegildo![]() |
es_ES |
dc.date.accessioned | 2021-04-17T03:32:20Z | |
dc.date.available | 2021-04-17T03:32:20Z | |
dc.date.issued | 2020-05-15 | es_ES |
dc.identifier.issn | 2155-5435 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165276 | |
dc.description | This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acscatal.0c00478 | es_ES |
dc.description.abstract | [EN] There is a considerable interest in the development of photocatalytic CO2 conversion by sunlight, since this process has similarities with natural photosynthesis on which life on Earth is based. At the moment, most of the efforts in this field have been aimed at increasing the productivity, rather than at the control of the product distribution. Particularly, compounds with two or more carbons (C2+) have higher added value than methane, carbon monoxide, or formate, which are typically the major products of CO2 reduction. This review focuses on those reports that have described the formation of compounds of two or more carbon atoms (C2+) in the photocatalytic CO2 reduction either by H2O or as H-2 as a source of electrons and protons. The existing literature has been organized according to the main factor considered to be responsible for the selectivity to C2+ products, including photocatalyst structuration, nature of the co-catalyst, influence of defects, and effects of surface plasmon band. Emphasis has been made on remarking the current empirical knowledge based on experimental results and the lack of predictive capability that could lead to the development of efficient photocatalytic systems for C2+ production. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and No. CTQ2018-89237-CO2R1) and Generalitat Valenciana (Prometeo 2017/83) is gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation.ispartof | ACS Catalysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Photocatalysis | es_ES |
dc.subject | CO2 reduction | es_ES |
dc.subject | Solar fuel | es_ES |
dc.subject | Selectivity | es_ES |
dc.subject | C2+products | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Photocatalytic CO2 Reduction to C2+Products | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1021/acscatal.0c00478 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Albero-Sancho, J.; Peng, Y.; García Gómez, H. (2020). Photocatalytic CO2 Reduction to C2+Products. ACS Catalysis. 10(10):5734-5749. https://doi.org/10.1021/acscatal.0c00478 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1021/acscatal.0c00478 | es_ES |
dc.description.upvformatpinicio | 5734 | es_ES |
dc.description.upvformatpfin | 5749 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.pasarela | S\432046 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Low, J., Cheng, B., & Yu, J. (2017). Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science, 392, 658-686. doi:10.1016/j.apsusc.2016.09.093 | es_ES |
dc.description.references | Zeng, S., Kar, P., Thakur, U. K., & Shankar, K. (2018). A review on photocatalytic CO2reduction using perovskite oxide nanomaterials. Nanotechnology, 29(5), 052001. doi:10.1088/1361-6528/aa9fb1 | es_ES |
dc.description.references | Ola, O., & Maroto-Valer, M. M. (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 16-42. doi:10.1016/j.jphotochemrev.2015.06.001 | es_ES |
dc.description.references | Tachibana, Y., Vayssieres, L., & Durrant, J. R. (2012). Artificial photosynthesis for solar water-splitting. Nature Photonics, 6(8), 511-518. doi:10.1038/nphoton.2012.175 | es_ES |
dc.description.references | Gust, D., Moore, T. A., & Moore, A. L. (2009). Solar Fuels via Artificial Photosynthesis. Accounts of Chemical Research, 42(12), 1890-1898. doi:10.1021/ar900209b | es_ES |
dc.description.references | Zhang, T., & Lin, W. (2014). Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev., 43(16), 5982-5993. doi:10.1039/c4cs00103f | es_ES |
dc.description.references | Hao, Y., & Steinfeld, A. (2017). Fuels from water, CO 2 and solar energy. Science Bulletin, 62(16), 1099-1101. doi:10.1016/j.scib.2017.08.013 | es_ES |
dc.description.references | Saeidi, S., Amin, N. A. S., & Rahimpour, M. R. (2014). Hydrogenation of CO2 to value-added products—A review and potential future developments. Journal of CO2 Utilization, 5, 66-81. doi:10.1016/j.jcou.2013.12.005 | es_ES |
dc.description.references | Ma, J., Sun, N., Zhang, X., Zhao, N., Xiao, F., Wei, W., & Sun, Y. (2009). A short review of catalysis for CO2 conversion. Catalysis Today, 148(3-4), 221-231. doi:10.1016/j.cattod.2009.08.015 | es_ES |
dc.description.references | Huang, C.-H., & Tan, C.-S. (2014). A Review: CO2 Utilization. Aerosol and Air Quality Research, 14(2), 480-499. doi:10.4209/aaqr.2013.10.0326 | es_ES |
dc.description.references | Jia, J., Wang, H., Lu, Z., O’Brien, P. G., Ghoussoub, M., Duchesne, P., … Ozin, G. A. (2017). Photothermal Catalysis: Photothermal Catalyst Engineering: Hydrogenation of Gaseous CO2 with High Activity and Tailored Selectivity (Adv. Sci. 10/2017). Advanced Science, 4(10). doi:10.1002/advs.201770052 | es_ES |
dc.description.references | Hurtado, L., Natividad, R., & García, H. (2016). Photocatalytic activity of Cu2O supported on multi layers graphene for CO2 reduction by water under batch and continuous flow. Catalysis Communications, 84, 30-35. doi:10.1016/j.catcom.2016.05.025 | es_ES |
dc.description.references | Wu, J., Huang, Y., Ye, W., & Li, Y. (2017). CO2Reduction: From the Electrochemical to Photochemical Approach. Advanced Science, 4(11), 1700194. doi:10.1002/advs.201700194 | es_ES |
dc.description.references | Seo, H., Katcher, M. H., & Jamison, T. F. (2016). Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow. Nature Chemistry, 9(5), 453-456. doi:10.1038/nchem.2690 | es_ES |
dc.description.references | Vu, N., Kaliaguine, S., & Do, T. (2019). Critical Aspects and Recent Advances in Structural Engineering of Photocatalysts for Sunlight‐Driven Photocatalytic Reduction of CO 2 into Fuels. Advanced Functional Materials, 29(31), 1901825. doi:10.1002/adfm.201901825 | es_ES |
dc.description.references | Niu, J., Shen, S., Zhou, L., Liu, Z., Feng, P., Ou, X., & Qiang, Y. (2016). Synthesis and hydrogenation of anatase TiO2 microspheres composed of porous single crystals for significantly improved photocatalytic activity. RSC Advances, 6(67), 62907-62910. doi:10.1039/c6ra12053a | es_ES |
dc.description.references | Neaţu, Ş., Maciá-Agulló, J. A., Concepción, P., & Garcia, H. (2014). Gold–Copper Nanoalloys Supported on TiO2 as Photocatalysts for CO2 Reduction by Water. Journal of the American Chemical Society, 136(45), 15969-15976. doi:10.1021/ja506433k | es_ES |
dc.description.references | Xiong, Z., Lei, Z., Kuang, C.-C., Chen, X., Gong, B., Zhao, Y., … Wu, J. C. S. (2017). Selective photocatalytic reduction of CO2 into CH4 over Pt-Cu2O TiO2 nanocrystals: The interaction between Pt and Cu2O cocatalysts. Applied Catalysis B: Environmental, 202, 695-703. doi:10.1016/j.apcatb.2016.10.001 | es_ES |
dc.description.references | Zhai, Q., Xie, S., Fan, W., Zhang, Q., Wang, Y., Deng, W., & Wang, Y. (2013). Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Co-catalysts with a Core-Shell Structure. Angewandte Chemie International Edition, 52(22), 5776-5779. doi:10.1002/anie.201301473 | es_ES |
dc.description.references | Wei, W., & Jinlong, G. (2010). Methanation of carbon dioxide: an overview. Frontiers of Chemical Science and Engineering, 5(1), 2-10. doi:10.1007/s11705-010-0528-3 | es_ES |
dc.description.references | Frontera, P., Macario, A., Ferraro, M., & Antonucci, P. (2017). Supported Catalysts for CO2 Methanation: A Review. Catalysts, 7(12), 59. doi:10.3390/catal7020059 | es_ES |
dc.description.references | Mateo, D., Albero, J., & García, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 224, 563-571. doi:10.1016/j.apcatb.2017.10.071 | es_ES |
dc.description.references | Zhao, J., Yang, Q., Shi, R., Waterhouse, G. I. N., Zhang, X., Wu, L.-Z., … Zhang, T. (2020). FeO–CeO2 nanocomposites: an efficient and highly selective catalyst system for photothermal CO2 reduction to CO. NPG Asia Materials, 12(1). doi:10.1038/s41427-019-0171-5 | es_ES |
dc.description.references | Xiao, J.-D., & Jiang, H.-L. (2018). Metal–Organic Frameworks for Photocatalysis and Photothermal Catalysis. Accounts of Chemical Research, 52(2), 356-366. doi:10.1021/acs.accounts.8b00521 | es_ES |
dc.description.references | Wang, C., Sun, Z., Zheng, Y., & Hu, Y. H. (2019). Recent progress in visible light photocatalytic conversion of carbon dioxide. Journal of Materials Chemistry A, 7(3), 865-887. doi:10.1039/c8ta09865d | es_ES |
dc.description.references | Voiry, D., Shin, H. S., Loh, K. P., & Chhowalla, M. (2018). Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nature Reviews Chemistry, 2(1). doi:10.1038/s41570-017-0105 | es_ES |
dc.description.references | Lee, Y. Y., Jung, H. S., & Kang, Y. T. (2017). A review: Effect of nanostructures on photocatalytic CO 2 conversion over metal oxides and compound semiconductors. Journal of CO2 Utilization, 20, 163-177. doi:10.1016/j.jcou.2017.05.019 | es_ES |
dc.description.references | Yang, M.-Q., & Xu, Y.-J. (2016). Photocatalytic conversion of CO2 over graphene-based composites: current status and future perspective. Nanoscale Horizons, 1(3), 185-200. doi:10.1039/c5nh00113g | es_ES |
dc.description.references | Peng, C., Reid, G., Wang, H., & Hu, P. (2017). Perspective: Photocatalytic reduction of CO2 to solar fuels over semiconductors. The Journal of Chemical Physics, 147(3), 030901. doi:10.1063/1.4985624 | es_ES |
dc.description.references | Lei, Z., Xue, Y., Chen, W., Qiu, W., Zhang, Y., Horike, S., & Tang, L. (2018). MOFs-Based Heterogeneous Catalysts: New Opportunities for Energy-Related CO2 Conversion. Advanced Energy Materials, 8(32), 1801587. doi:10.1002/aenm.201801587 | es_ES |
dc.description.references | Sun, Z., Talreja, N., Tao, H., Texter, J., Muhler, M., Strunk, J., & Chen, J. (2018). Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angewandte Chemie International Edition, 57(26), 7610-7627. doi:10.1002/anie.201710509 | es_ES |
dc.description.references | Chen, G., Waterhouse, G. I. N., Shi, R., Zhao, J., Li, Z., Wu, L., … Zhang, T. (2019). From Solar Energy to Fuels: Recent Advances in Light‐Driven C 1 Chemistry. Angewandte Chemie International Edition, 58(49), 17528-17551. doi:10.1002/anie.201814313 | es_ES |
dc.description.references | U.S Energy Information Administration. https://www.eia.gov/. | es_ES |
dc.description.references | Jouny, M., Luc, W., & Jiao, F. (2018). General Techno-Economic Analysis of CO2 Electrolysis Systems. Industrial & Engineering Chemistry Research, 57(6), 2165-2177. doi:10.1021/acs.iecr.7b03514 | es_ES |
dc.description.references | Xia, X.-H., Jia, Z.-J., Yu, Y., Liang, Y., Wang, Z., & Ma, L.-L. (2007). Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon, 45(4), 717-721. doi:10.1016/j.carbon.2006.11.028 | es_ES |
dc.description.references | Lee, C.-W., Antoniou Kourounioti, R., Wu, J. C. S., Murchie, E., Maroto-Valer, M., Jensen, O. E., … Ruban, A. (2014). Photocatalytic conversion of CO2 to hydrocarbons by light-harvesting complex assisted Rh-doped TiO2 photocatalyst. Journal of CO2 Utilization, 5, 33-40. doi:10.1016/j.jcou.2013.12.002 | es_ES |
dc.description.references | Shown, I., Hsu, H.-C., Chang, Y.-C., Lin, C.-H., Roy, P. K., Ganguly, A., … Chen, K.-H. (2014). Highly Efficient Visible Light Photocatalytic Reduction of CO2 to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide. Nano Letters, 14(11), 6097-6103. doi:10.1021/nl503609v | es_ES |
dc.description.references | Han, Q., Zhou, Y., Tang, L., Li, P., Tu, W., Li, L., … Zou, Z. (2016). Synthesis of single-crystalline, porous TaON microspheres toward visible-light photocatalytic conversion of CO2 into liquid hydrocarbon fuels. RSC Advances, 6(93), 90792-90796. doi:10.1039/c6ra19368d | es_ES |
dc.description.references | Zhang, X., Han, F., Shi, B., Farsinezhad, S., Dechaine, G. P., & Shankar, K. (2012). Photocatalytic Conversion of Diluted CO2into Light Hydrocarbons Using Periodically Modulated Multiwalled Nanotube Arrays. Angewandte Chemie International Edition, 51(51), 12732-12735. doi:10.1002/anie.201205619 | es_ES |
dc.description.references | Chen, G., Gao, R., Zhao, Y., Li, Z., Waterhouse, G. I. N., Shi, R., … Zhang, T. (2017). Alumina‐Supported CoFe Alloy Catalysts Derived from Layered‐Double‐Hydroxide Nanosheets for Efficient Photothermal CO 2 Hydrogenation to Hydrocarbons. Advanced Materials, 30(3), 1704663. doi:10.1002/adma.201704663 | es_ES |
dc.description.references | Kim, W., Seok, T., & Choi, W. (2012). Nafion layer-enhanced photosynthetic conversion of CO2 into hydrocarbons on TiO2 nanoparticles. Energy & Environmental Science, 5(3), 6066. doi:10.1039/c2ee03338k | es_ES |
dc.description.references | Park, H., Ou, H.-H., Colussi, A. J., & Hoffmann, M. R. (2015). Artificial Photosynthesis of C1–C3 Hydrocarbons from Water and CO2 on Titanate Nanotubes Decorated with Nanoparticle Elemental Copper and CdS Quantum Dots. The Journal of Physical Chemistry A, 119(19), 4658-4666. doi:10.1021/jp511329d | es_ES |
dc.description.references | Liu, L., Puga, A. V., Cored, J., Concepción, P., Pérez-Dieste, V., García, H., & Corma, A. (2018). Sunlight-assisted hydrogenation of CO 2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@C nanocomposites. Applied Catalysis B: Environmental, 235, 186-196. doi:10.1016/j.apcatb.2018.04.060 | es_ES |
dc.description.references | Sorcar, S., Thompson, J., Hwang, Y., Park, Y. H., Majima, T., Grimes, C. A., … In, S.-I. (2018). High-rate solar-light photoconversion of CO2 to fuel: controllable transformation from C1 to C2 products. Energy & Environmental Science, 11(11), 3183-3193. doi:10.1039/c8ee00983j | es_ES |
dc.description.references | Billo, T., Fu, F.-Y., Raghunath, P., Shown, I., Chen, W.-F., Lien, H.-T., … Chen, K.-H. (2017). Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction. Small, 14(2), 1702928. doi:10.1002/smll.201702928 | es_ES |
dc.description.references | Sun, S., Watanabe, M., Wu, J., An, Q., & Ishihara, T. (2018). Ultrathin WO3·0.33H2O Nanotubes for CO2 Photoreduction to Acetate with High Selectivity. Journal of the American Chemical Society, 140(20), 6474-6482. doi:10.1021/jacs.8b03316 | es_ES |
dc.description.references | Gellé, A., Jin, T., de la Garza, L., Price, G. D., Besteiro, L. V., & Moores, A. (2019). Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chemical Reviews, 120(2), 986-1041. doi:10.1021/acs.chemrev.9b00187 | es_ES |
dc.description.references | Yu, S., Wilson, A. J., Heo, J., & Jain, P. K. (2018). Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. Nano Letters, 18(4), 2189-2194. doi:10.1021/acs.nanolett.7b05410 | es_ES |
dc.description.references | Chen, Q., Chen, X., Fang, M., Chen, J., Li, Y., Xie, Z., … Zheng, L. (2019). Photo-induced Au–Pd alloying at TiO2 {101} facets enables robust CO2 photocatalytic reduction into hydrocarbon fuels. Journal of Materials Chemistry A, 7(3), 1334-1340. doi:10.1039/c8ta09412h | es_ES |
dc.description.references | Kibria, M. G., Edwards, J. P., Gabardo, C. M., Dinh, C., Seifitokaldani, A., Sinton, D., & Sargent, E. H. (2019). Electrochemical CO 2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. Advanced Materials, 31(31), 1807166. doi:10.1002/adma.201807166 | es_ES |
dc.description.references | Fu, J., Jiang, K., Qiu, X., Yu, J., & Liu, M. (2020). Product selectivity of photocatalytic CO2 reduction reactions. Materials Today, 32, 222-243. doi:10.1016/j.mattod.2019.06.009 | es_ES |
dc.description.references | Habisreutinger, S. N., Schmidt-Mende, L., & Stolarczyk, J. K. (2013). Photocatalytic Reduction of CO2on TiO2and Other Semiconductors. Angewandte Chemie International Edition, 52(29), 7372-7408. doi:10.1002/anie.201207199 | es_ES |
dc.description.references | Unruh, D., Pabst, K., & Schaub, G. (2010). Fischer−Tropsch Synfuels from Biomass: Maximizing Carbon Efficiency and Hydrocarbon Yield. Energy & Fuels, 24(4), 2634-2641. doi:10.1021/ef9009185 | es_ES |
dc.description.references | Klerk, A. l. In Fischer–Tropsch Refining; de Klerk, A., Ed. 2011; pp 73–103. | es_ES |
dc.description.references | Jager, B. In Studies in Surfactant Science and Catalysis, Vol. 119; Parmaliana, A., Sanfilippo, D., Frusteri, F., Vaccari, A., Arena, F., Eds. Elsevier, 1998; pp 25–34. | es_ES |
dc.description.references | Gu, B., Khodakov, A. Y., & Ordomsky, V. V. (2018). Selectivity shift from paraffins to α-olefins in low temperature Fischer–Tropsch synthesis in the presence of carboxylic acids. Chemical Communications, 54(19), 2345-2348. doi:10.1039/c7cc08692j | es_ES |
dc.description.references | Brady, R. C., & Pettit, R. (1981). Mechanism of the Fischer-Tropsch reaction. The chain propagation step. Journal of the American Chemical Society, 103(5), 1287-1289. doi:10.1021/ja00395a081 | es_ES |
dc.description.references | Zhang, Q., Deng, W., & Wang, Y. (2013). Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis. Journal of Energy Chemistry, 22(1), 27-38. doi:10.1016/s2095-4956(13)60003-0 | es_ES |
dc.description.references | Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., & Gu, S. (2014). A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol., 4(8), 2210-2229. doi:10.1039/c4cy00327f | es_ES |
dc.description.references | Yue, W., Randorn, C., Attidekou, P. S., Su, Z., Irvine, J. T. S., & Zhou, W. (2009). Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2. Advanced Functional Materials, 19(17), 2826-2833. doi:10.1002/adfm.200900658 | es_ES |
dc.description.references | Blankenship, R. E. Molecular Mechanims of Photosynthesis, 2nd Edition; Wiley Blackwell, 2002; Vol. 7, pp d765–d783. | es_ES |
dc.description.references | Ran, J., Jaroniec, M., & Qiao, S. (2018). Cocatalysts in Semiconductor‐based Photocatalytic CO 2 Reduction: Achievements, Challenges, and Opportunities. Advanced Materials, 30(7), 1704649. doi:10.1002/adma.201704649 | es_ES |
dc.description.references | Ran, J., Zhang, J., Yu, J., Jaroniec, M., & Qiao, S. Z. (2014). Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev., 43(22), 7787-7812. doi:10.1039/c3cs60425j | es_ES |
dc.description.references | Du, H., Williams, C. T., Ebner, A. D., & Ritter, J. A. (2010). In Situ FTIR Spectroscopic Analysis of Carbonate Transformations during Adsorption and Desorption of CO2 in K-Promoted HTlc. Chemistry of Materials, 22(11), 3519-3526. doi:10.1021/cm100703e | es_ES |
dc.description.references | Panagiotopoulou, P., & Kondarides, D. I. (2009). Effects of alkali promotion of TiO2 on the chemisorptive properties and water–gas shift activity of supported noble metal catalysts. Journal of Catalysis, 267(1), 57-66. doi:10.1016/j.jcat.2009.07.014 | es_ES |
dc.description.references | Hölzl, J.; Schulte, F. K. Work Function of Metals, Vol. 85; Springer: Berlin, 1979; pp 1–150. | es_ES |
dc.description.references | D’Arienzo, M., Carbajo, J., Bahamonde, A., Crippa, M., Polizzi, S., Scotti, R., … Morazzoni, F. (2011). Photogenerated Defects in Shape-Controlled TiO2 Anatase Nanocrystals: A Probe To Evaluate the Role of Crystal Facets in Photocatalytic Processes. Journal of the American Chemical Society, 133(44), 17652-17661. doi:10.1021/ja204838s | es_ES |
dc.description.references | Kong, M., Li, Y., Chen, X., Tian, T., Fang, P., Zheng, F., & Zhao, X. (2011). Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. Journal of the American Chemical Society, 133(41), 16414-16417. doi:10.1021/ja207826q | es_ES |
dc.description.references | Nowotny, M. K., Sheppard, L. R., Bak, T., & Nowotny, J. (2008). Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts. The Journal of Physical Chemistry C, 112(14), 5275-5300. doi:10.1021/jp077275m | es_ES |
dc.description.references | Bai, S., Zhang, N., Gao, C., & Xiong, Y. (2018). Defect engineering in photocatalytic materials. Nano Energy, 53, 296-336. doi:10.1016/j.nanoen.2018.08.058 | es_ES |
dc.description.references | Sorescu, D. C., Al-Saidi, W. A., & Jordan, K. D. (2011). CO2 adsorption on TiO2(101) anatase: A dispersion-corrected density functional theory study. The Journal of Chemical Physics, 135(12), 124701. doi:10.1063/1.3638181 | es_ES |
dc.description.references | Yin, W.-J., Wen, B., Bandaru, S., Krack, M., Lau, M., & Liu, L.-M. (2016). The Effect of Excess Electron and hole on CO2 Adsorption and Activation on Rutile (110) surface. Scientific Reports, 6(1). doi:10.1038/srep23298 | es_ES |
dc.description.references | Deskins, N. A., Rousseau, R., & Dupuis, M. (2010). Defining the Role of Excess Electrons in the Surface Chemistry of TiO2. The Journal of Physical Chemistry C, 114(13), 5891-5897. doi:10.1021/jp101155t | es_ES |
dc.description.references | Razzaq, A., Sinhamahapatra, A., Kang, T.-H., Grimes, C. A., Yu, J.-S., & In, S.-I. (2017). Efficient solar light photoreduction of CO 2 to hydrocarbon fuels via magnesiothermally reduced TiO 2 photocatalyst. Applied Catalysis B: Environmental, 215, 28-35. doi:10.1016/j.apcatb.2017.05.028 | es_ES |
dc.description.references | Liu, J., Bai, H., Wang, Y., Liu, Z., Zhang, X., & Sun, D. D. (2010). Self-Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two-Phase Interface and Their Anti-Recombination in Photocatalytic Applications. Advanced Functional Materials, 20(23), 4175-4181. doi:10.1002/adfm.201001391 | es_ES |
dc.description.references | Tu, W., Zhou, Y., Liu, Q., Yan, S., Bao, S., Wang, X., … Zou, Z. (2012). An In Situ Simultaneous Reduction-Hydrolysis Technique for Fabrication of TiO2-Graphene 2D Sandwich-Like Hybrid Nanosheets: Graphene-Promoted Selectivity of Photocatalytic-Driven Hydrogenation and Coupling of CO2into Methane and Ethane. Advanced Functional Materials, 23(14), 1743-1749. doi:10.1002/adfm.201202349 | es_ES |
dc.description.references | Chen, X., Liu, L., Yu, P. Y., & Mao, S. S. (2011). Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science, 331(6018), 746-750. doi:10.1126/science.1200448 | es_ES |
dc.description.references | Hou, W., & Cronin, S. B. (2012). A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Advanced Functional Materials, 23(13), 1612-1619. doi:10.1002/adfm.201202148 | es_ES |
dc.description.references | Zhang, X., Chen, Y. L., Liu, R.-S., & Tsai, D. P. (2013). Plasmonic photocatalysis. Reports on Progress in Physics, 76(4), 046401. doi:10.1088/0034-4885/76/4/046401 | es_ES |
dc.description.references | Hou, W., Hung, W. H., Pavaskar, P., Goeppert, A., Aykol, M., & Cronin, S. B. (2011). Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions. ACS Catalysis, 1(8), 929-936. doi:10.1021/cs2001434 | es_ES |
dc.description.references | Montes-Navajas, P., Serra, M., & Garcia, H. (2013). Influence of the irradiation wavelength on the photocatalytic activity of Au–Pt nanoalloys supported on TiO2 for hydrogen generation from water. Catalysis Science & Technology, 3(9), 2252. doi:10.1039/c3cy00102d | es_ES |
dc.description.references | Liu, C., Han, X., Xie, S., Kuang, Q., Wang, X., Jin, M., … Zheng, L. (2012). Enhancing the Photocatalytic Activity of Anatase TiO2by Improving the Specific Facet-Induced Spontaneous Separation of Photogenerated Electrons and Holes. Chemistry - An Asian Journal, 8(1), 282-289. doi:10.1002/asia.201200886 | es_ES |