- -

The application of quality control charts for identifying changes in time-series home energy data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The application of quality control charts for identifying changes in time-series home energy data

Mostrar el registro completo del ítem

Vivancos, J.; Buswell, RA.; Cosar-Jorda, P.; Aparicio Fernandez, CS. (2020). The application of quality control charts for identifying changes in time-series home energy data. Energy and Buildings. 215:1-11. https://doi.org/10.1016/j.enbuild.2020.109841

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165280

Ficheros en el ítem

Metadatos del ítem

Título: The application of quality control charts for identifying changes in time-series home energy data
Autor: Vivancos, José-Luis Buswell, Richard A. Cosar-Jorda, Paula Aparicio Fernandez, Carolina Sabina
Entidad UPV: Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques
Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria
Fecha difusión:
Resumen:
[EN] Energy consumption in the home is heavily influenced by the occupants and the routines they adopt. Although these routines tend to be regarded as somewhat static in nature, more recent evidence from the social sciences ...[+]
Palabras clave: Domestic monitoring data , Appliances , Changes , Occupancy , Statistical quality control , Family homes
Derechos de uso: Cerrado
Fuente:
Energy and Buildings. (issn: 0378-7788 )
DOI: 10.1016/j.enbuild.2020.109841
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.enbuild.2020.109841
Código del Proyecto:
info:eu-repo/grantAgreement/UKRI//EP%2FI000267%2F1/GB/LEEDR: Low Effort Energy Demand Reduction (Part 2 of the Call)/
Agradecimientos:
The data used to underpin this has been produced under the LEEDR: Low Effort Energy Demand Reduction Project based at Loughborough University, UK (EPSRC Grant Number EP/I00 0267/1).
Tipo: Artículo

References

J.E. Morrissey, S. Axon, R. Aiesha, J. Hillman, A. Revez, B. Lennon, Identification and behaviour change initiatives, 2016.

Abrahamse, W., Steg, L., Vlek, C., & Rothengatter, T. (2005). A review of intervention studies aimed at household energy conservation. Journal of Environmental Psychology, 25(3), 273-291. doi:10.1016/j.jenvp.2005.08.002

Shove, E. (2003). Converging Conventions of Comfort, Cleanliness and Convenience. Journal of Consumer Policy, 26(4), 395-418. doi:10.1023/a:1026362829781 [+]
J.E. Morrissey, S. Axon, R. Aiesha, J. Hillman, A. Revez, B. Lennon, Identification and behaviour change initiatives, 2016.

Abrahamse, W., Steg, L., Vlek, C., & Rothengatter, T. (2005). A review of intervention studies aimed at household energy conservation. Journal of Environmental Psychology, 25(3), 273-291. doi:10.1016/j.jenvp.2005.08.002

Shove, E. (2003). Converging Conventions of Comfort, Cleanliness and Convenience. Journal of Consumer Policy, 26(4), 395-418. doi:10.1023/a:1026362829781

Steemers, K., & Yun, G. Y. (2009). Household energy consumption: a study of the role of occupants. Building Research & Information, 37(5-6), 625-637. doi:10.1080/09613210903186661

Cosar-Jorda, P., Buswell, R. A., & Mitchell, V. A. (2018). Determining of the role of ventilation in residential energy demand reduction using a heat-balance approach. Building and Environment, 144, 508-518. doi:10.1016/j.buildenv.2018.08.053

Shipworth, M., Firth, S. K., Gentry, M. I., Wright, A. J., Shipworth, D. T., & Lomas, K. J. (2010). Central heating thermostat settings and timing: building demographics. Building Research & Information, 38(1), 50-69. doi:10.1080/09613210903263007

Buswell, R., Webb, L., Mitchell, V., & Leder Mackley, K. (2016). Multidisciplinary research: should effort be the measure of success? Building Research & Information, 45(5), 539-555. doi:10.1080/09613218.2016.1194601

Pink, S., Mackley, K. L., & Moroşanu, R. (2013). Hanging out at home: Laundry as a thread and texture of everyday life. International Journal of Cultural Studies, 18(2), 209-224. doi:10.1177/1367877913508461

Yan, D., O’Brien, W., Hong, T., Feng, X., Burak Gunay, H., Tahmasebi, F., & Mahdavi, A. (2015). Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy and Buildings, 107, 264-278. doi:10.1016/j.enbuild.2015.08.032

Hargreaves, T. (2011). Practice-ing behaviour change: Applying social practice theory to pro-environmental behaviour change. Journal of Consumer Culture, 11(1), 79-99. doi:10.1177/1469540510390500

Aminikhanghahi, S., & Cook, D. J. (2016). A survey of methods for time series change point detection. Knowledge and Information Systems, 51(2), 339-367. doi:10.1007/s10115-016-0987-z

Strengers, Y. (2011). Negotiating everyday life: The role of energy and water consumption feedback. Journal of Consumer Culture, 11(3), 319-338. doi:10.1177/1469540511417994

HM Government, Industrial Strategy: Building a Britain fit for the future, (2017). https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/664563/industrial-strategy-white-paper-web-ready-version.pdf?_ga=2.176869477.131331705.1566905390-1346621436.1566905390.

Darby, S. J. (2017). Smart electric storage heating and potential for residential demand response. Energy Efficiency, 11(1), 67-77. doi:10.1007/s12053-017-9550-3

Department for Business Energy & Industrial Strategy, Energy consumption in the UK, 2016.

Perez, K. X., Cetin, K., Baldea, M., & Edgar, T. F. (2017). Development and analysis of residential change-point models from smart meter data. Energy and Buildings, 139, 351-359. doi:10.1016/j.enbuild.2016.12.084

Frederiks, E. R., Stenner, K., Hobman, E. V., & Fischle, M. (2016). Evaluating energy behavior change programs using randomized controlled trials: Best practice guidelines for policymakers. Energy Research & Social Science, 22, 147-164. doi:10.1016/j.erss.2016.08.020

Gynther, L., Mikkonen, I., & Smits, A. (2011). Evaluation of European energy behavioural change programmes. Energy Efficiency, 5(1), 67-82. doi:10.1007/s12053-011-9115-9

Behavioural Insights Team, Behaviour Change and Energy Use, Cabinet Off. London(Available at)/Http//Www.Cabinetoffice.Gov.Uk/Resourcelibrary/Behaviour-Change-and-Energy-UseS. (2011).

Pink, S., & Mackley, K. L. (2012). Video and a Sense of the Invisible: Approaching Domestic Energy Consumption through the Sensory Home. Sociological Research Online, 17(1), 87-105. doi:10.5153/sro.2583

Belaïd, F., Bakaloglou, S., & Roubaud, D. (2018). Direct rebound effect of residential gas demand: Empirical evidence from France. Energy Policy, 115, 23-31. doi:10.1016/j.enpol.2017.12.040

Wilson, C., Hargreaves, T., & Hauxwell-Baldwin, R. (2017). Benefits and risks of smart home technologies. Energy Policy, 103, 72-83. doi:10.1016/j.enpol.2016.12.047

Mogles, N., Walker, I., Ramallo-González, A. P., Lee, J., Natarajan, S., Padget, J., … Coley, D. (2017). How smart do smart meters need to be? Building and Environment, 125, 439-450. doi:10.1016/j.buildenv.2017.09.008

Hargreaves, T., Nye, M., & Burgess, J. (2010). Making energy visible: A qualitative field study of how householders interact with feedback from smart energy monitors. Energy Policy, 38(10), 6111-6119. doi:10.1016/j.enpol.2010.05.068

Darby, S. J. (2017). Smart technology in the home: time for more clarity. Building Research & Information, 46(1), 140-147. doi:10.1080/09613218.2017.1301707

Lynham, J., Nitta, K., Saijo, T., & Tarui, N. (2016). Why does real-time information reduce energy consumption? Energy Economics, 54, 173-181. doi:10.1016/j.eneco.2015.11.007

Owens, S., & Driffill, L. (2008). How to change attitudes and behaviours in the context of energy. Energy Policy, 36(12), 4412-4418. doi:10.1016/j.enpol.2008.09.031

Seem, J. E. (2007). Using intelligent data analysis to detect abnormal energy consumption in buildings. Energy and Buildings, 39(1), 52-58. doi:10.1016/j.enbuild.2006.03.033

Richardson, I., Thomson, M., Infield, D., & Clifford, C. (2010). Domestic electricity use: A high-resolution energy demand model. Energy and Buildings, 42(10), 1878-1887. doi:10.1016/j.enbuild.2010.05.023

Meyers, R. J., Williams, E. D., & Matthews, H. S. (2010). Scoping the potential of monitoring and control technologies to reduce energy use in homes. Energy and Buildings, 42(5), 563-569. doi:10.1016/j.enbuild.2009.10.026

Weiss, M., Patel, M. K., Junginger, M., & Blok, K. (2010). Analyzing price and efficiency dynamics of large appliances with the experience curve approach. Energy Policy, 38(2), 770-783. doi:10.1016/j.enpol.2009.10.022

Yu, Z., Haghighat, F., Fung, B. C. M., & Yoshino, H. (2010). A decision tree method for building energy demand modeling. Energy and Buildings, 42(10), 1637-1646. doi:10.1016/j.enbuild.2010.04.006

Richardson, I., Thomson, M., & Infield, D. (2008). A high-resolution domestic building occupancy model for energy demand simulations. Energy and Buildings, 40(8), 1560-1566. doi:10.1016/j.enbuild.2008.02.006

Haldi, F., & Robinson, D. (2008). On the behaviour and adaptation of office occupants. Building and Environment, 43(12), 2163-2177. doi:10.1016/j.buildenv.2008.01.003

Bacher, P., & Madsen, H. (2011). Identifying suitable models for the heat dynamics of buildings. Energy and Buildings, 43(7), 1511-1522. doi:10.1016/j.enbuild.2011.02.005

Santamouris, M., Mihalakakou, G., Patargias, P., Gaitani, N., Sfakianaki, K., Papaglastra, M., … Zerefos, S. (2007). Using intelligent clustering techniques to classify the energy performance of school buildings. Energy and Buildings, 39(1), 45-51. doi:10.1016/j.enbuild.2006.04.018

Van Raaij, W. F., & Verhallen, T. M. M. (1983). Patterns of residential energy behavior. Journal of Economic Psychology, 4(1-2), 85-106. doi:10.1016/0167-4870(83)90047-8

Papakostas, K. T., & Sotiropoulos, B. A. (1997). Occupational and energy behaviour patterns in Greek residences. Energy and Buildings, 26(2), 207-213. doi:10.1016/s0378-7788(97)00002-9

Aminikhanghahi, S., & Cook, D. J. (2019). Enhancing activity recognition using CPD-based activity segmentation. Pervasive and Mobile Computing, 53, 75-89. doi:10.1016/j.pmcj.2019.01.004

Krishnan, N. C., & Cook, D. J. (2014). Activity recognition on streaming sensor data. Pervasive and Mobile Computing, 10, 138-154. doi:10.1016/j.pmcj.2012.07.003

Wei, S., Jones, R., & de Wilde, P. (2014). Driving factors for occupant-controlled space heating in residential buildings. Energy and Buildings, 70, 36-44. doi:10.1016/j.enbuild.2013.11.001

R. Buswell, L. Webb, P. Cosar-Jorda, D. Marini, S. Brownlee, M. Thomson, S.-.H. Yang, R. Kalawsky, LEEDR project home energy dataset, (2018). doi:10.17028/rd.lboro.6176450.v1.

Kulinskaya, E., & Koricheva, J. (2010). Use of quality control charts for detection of outliers and temporal trends in cumulative meta-analysis. Research Synthesis Methods, 1(3-4), 297-307. doi:10.1002/jrsm.29

Hyndman, R. J., & Khandakar, Y. (2008). Automatic Time Series Forecasting: TheforecastPackage forR. Journal of Statistical Software, 27(3). doi:10.18637/jss.v027.i03

D. Montgomery, Introduction to statistical quality control, 2009. doi:10.1002/1521-3773(20010316)40:6<9823::AID−ANIE9823>3.3.CO;2-C.

Barbeito, I., Zaragoza, S., Tarrío-Saavedra, J., & Naya, S. (2017). Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data. Applied Energy, 190, 1-17. doi:10.1016/j.apenergy.2016.12.100

Haines, V., & Mitchell, V. (2014). A persona-based approach to domestic energy retrofit. Building Research & Information, 42(4), 462-476. doi:10.1080/09613218.2014.893161

Eon S.E., Annual report2017, n.d.https://www.eon.com/content/dam/eon/eon-com/investors/annual-report/EON_GB17_EN.pdf(accessed December 21, 2018).

Paradiso, F., Paganelli, F., Giuli, D., & Capobianco, S. (2016). Context-Based Energy Disaggregation in Smart Homes. Future Internet, 8(1), 4. doi:10.3390/fi8010004

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem