- -

The application of quality control charts for identifying changes in time-series home energy data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The application of quality control charts for identifying changes in time-series home energy data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vivancos, José-Luis es_ES
dc.contributor.author Buswell, Richard A. es_ES
dc.contributor.author Cosar-Jorda, Paula es_ES
dc.contributor.author Aparicio Fernandez, Carolina Sabina es_ES
dc.date.accessioned 2021-04-17T03:32:32Z
dc.date.available 2021-04-17T03:32:32Z
dc.date.issued 2020-05-15 es_ES
dc.identifier.issn 0378-7788 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165280
dc.description.abstract [EN] Energy consumption in the home is heavily influenced by the occupants and the routines they adopt. Although these routines tend to be regarded as somewhat static in nature, more recent evidence from the social sciences suggests that patterns of consumption are actually more fluid and constantly evolve to accommodate the contingencies of everyday living. This makes detecting changes in patterns of activity and their impact on energy consumption difficult, particularly when these patterns are often invisible to the householder to begin with. Being able to identify when a change occurs, therefore, could be a powerful tool to establish the context of change and so to determine more appropriate corrective action to curb waste and create opportunities for greater flexibility in consumption. The growing adoption of smart meters and home energy monitoring provide a platform for numerical approaches, yet there is little work reported in the literature and none that have attempted to evaluate effectiveness of such methods applied to detect changes in behaviour using field monitoring data from family homes. This paper reports on the application of a Change Point Detection method based on statistical quality control charts applied to identify changes in activities a family home using typical monitoring data. The approach was found to be very effective, identifying 78% of the changes that occurred over a two-year period and hence the outlook for such methods is promising. The findings suggest that such techniques could significantly improve the quality of information provided in energy feedback and so could play a significant role in the pursuit of more efficient energy use in the home by adding value to monitoring systems and services. es_ES
dc.description.sponsorship The data used to underpin this has been produced under the LEEDR: Low Effort Energy Demand Reduction Project based at Loughborough University, UK (EPSRC Grant Number EP/I00 0267/1). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Energy and Buildings es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Domestic monitoring data es_ES
dc.subject Appliances es_ES
dc.subject Changes es_ES
dc.subject Occupancy es_ES
dc.subject Statistical quality control es_ES
dc.subject Family homes es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.title The application of quality control charts for identifying changes in time-series home energy data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.enbuild.2020.109841 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FI000267%2F1/GB/LEEDR: Low Effort Energy Demand Reduction (Part 2 of the Call)/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria es_ES
dc.description.bibliographicCitation Vivancos, J.; Buswell, RA.; Cosar-Jorda, P.; Aparicio Fernandez, CS. (2020). The application of quality control charts for identifying changes in time-series home energy data. Energy and Buildings. 215:1-11. https://doi.org/10.1016/j.enbuild.2020.109841 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.enbuild.2020.109841 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 215 es_ES
dc.relation.pasarela S\419280 es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.description.references J.E. Morrissey, S. Axon, R. Aiesha, J. Hillman, A. Revez, B. Lennon, Identification and behaviour change initiatives, 2016. es_ES
dc.description.references Abrahamse, W., Steg, L., Vlek, C., & Rothengatter, T. (2005). A review of intervention studies aimed at household energy conservation. Journal of Environmental Psychology, 25(3), 273-291. doi:10.1016/j.jenvp.2005.08.002 es_ES
dc.description.references Shove, E. (2003). Converging Conventions of Comfort, Cleanliness and Convenience. Journal of Consumer Policy, 26(4), 395-418. doi:10.1023/a:1026362829781 es_ES
dc.description.references Steemers, K., & Yun, G. Y. (2009). Household energy consumption: a study of the role of occupants. Building Research & Information, 37(5-6), 625-637. doi:10.1080/09613210903186661 es_ES
dc.description.references Cosar-Jorda, P., Buswell, R. A., & Mitchell, V. A. (2018). Determining of the role of ventilation in residential energy demand reduction using a heat-balance approach. Building and Environment, 144, 508-518. doi:10.1016/j.buildenv.2018.08.053 es_ES
dc.description.references Shipworth, M., Firth, S. K., Gentry, M. I., Wright, A. J., Shipworth, D. T., & Lomas, K. J. (2010). Central heating thermostat settings and timing: building demographics. Building Research & Information, 38(1), 50-69. doi:10.1080/09613210903263007 es_ES
dc.description.references Buswell, R., Webb, L., Mitchell, V., & Leder Mackley, K. (2016). Multidisciplinary research: should effort be the measure of success? Building Research & Information, 45(5), 539-555. doi:10.1080/09613218.2016.1194601 es_ES
dc.description.references Pink, S., Mackley, K. L., & Moroşanu, R. (2013). Hanging out at home: Laundry as a thread and texture of everyday life. International Journal of Cultural Studies, 18(2), 209-224. doi:10.1177/1367877913508461 es_ES
dc.description.references Yan, D., O’Brien, W., Hong, T., Feng, X., Burak Gunay, H., Tahmasebi, F., & Mahdavi, A. (2015). Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy and Buildings, 107, 264-278. doi:10.1016/j.enbuild.2015.08.032 es_ES
dc.description.references Hargreaves, T. (2011). Practice-ing behaviour change: Applying social practice theory to pro-environmental behaviour change. Journal of Consumer Culture, 11(1), 79-99. doi:10.1177/1469540510390500 es_ES
dc.description.references Aminikhanghahi, S., & Cook, D. J. (2016). A survey of methods for time series change point detection. Knowledge and Information Systems, 51(2), 339-367. doi:10.1007/s10115-016-0987-z es_ES
dc.description.references Strengers, Y. (2011). Negotiating everyday life: The role of energy and water consumption feedback. Journal of Consumer Culture, 11(3), 319-338. doi:10.1177/1469540511417994 es_ES
dc.description.references HM Government, Industrial Strategy: Building a Britain fit for the future, (2017). https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/664563/industrial-strategy-white-paper-web-ready-version.pdf?_ga=2.176869477.131331705.1566905390-1346621436.1566905390. es_ES
dc.description.references Darby, S. J. (2017). Smart electric storage heating and potential for residential demand response. Energy Efficiency, 11(1), 67-77. doi:10.1007/s12053-017-9550-3 es_ES
dc.description.references Department for Business Energy & Industrial Strategy, Energy consumption in the UK, 2016. es_ES
dc.description.references Perez, K. X., Cetin, K., Baldea, M., & Edgar, T. F. (2017). Development and analysis of residential change-point models from smart meter data. Energy and Buildings, 139, 351-359. doi:10.1016/j.enbuild.2016.12.084 es_ES
dc.description.references Frederiks, E. R., Stenner, K., Hobman, E. V., & Fischle, M. (2016). Evaluating energy behavior change programs using randomized controlled trials: Best practice guidelines for policymakers. Energy Research & Social Science, 22, 147-164. doi:10.1016/j.erss.2016.08.020 es_ES
dc.description.references Gynther, L., Mikkonen, I., & Smits, A. (2011). Evaluation of European energy behavioural change programmes. Energy Efficiency, 5(1), 67-82. doi:10.1007/s12053-011-9115-9 es_ES
dc.description.references Behavioural Insights Team, Behaviour Change and Energy Use, Cabinet Off. London(Available at)/Http//Www.Cabinetoffice.Gov.Uk/Resourcelibrary/Behaviour-Change-and-Energy-UseS. (2011). es_ES
dc.description.references Pink, S., & Mackley, K. L. (2012). Video and a Sense of the Invisible: Approaching Domestic Energy Consumption through the Sensory Home. Sociological Research Online, 17(1), 87-105. doi:10.5153/sro.2583 es_ES
dc.description.references Belaïd, F., Bakaloglou, S., & Roubaud, D. (2018). Direct rebound effect of residential gas demand: Empirical evidence from France. Energy Policy, 115, 23-31. doi:10.1016/j.enpol.2017.12.040 es_ES
dc.description.references Wilson, C., Hargreaves, T., & Hauxwell-Baldwin, R. (2017). Benefits and risks of smart home technologies. Energy Policy, 103, 72-83. doi:10.1016/j.enpol.2016.12.047 es_ES
dc.description.references Mogles, N., Walker, I., Ramallo-González, A. P., Lee, J., Natarajan, S., Padget, J., … Coley, D. (2017). How smart do smart meters need to be? Building and Environment, 125, 439-450. doi:10.1016/j.buildenv.2017.09.008 es_ES
dc.description.references Hargreaves, T., Nye, M., & Burgess, J. (2010). Making energy visible: A qualitative field study of how householders interact with feedback from smart energy monitors. Energy Policy, 38(10), 6111-6119. doi:10.1016/j.enpol.2010.05.068 es_ES
dc.description.references Darby, S. J. (2017). Smart technology in the home: time for more clarity. Building Research & Information, 46(1), 140-147. doi:10.1080/09613218.2017.1301707 es_ES
dc.description.references Lynham, J., Nitta, K., Saijo, T., & Tarui, N. (2016). Why does real-time information reduce energy consumption? Energy Economics, 54, 173-181. doi:10.1016/j.eneco.2015.11.007 es_ES
dc.description.references Owens, S., & Driffill, L. (2008). How to change attitudes and behaviours in the context of energy. Energy Policy, 36(12), 4412-4418. doi:10.1016/j.enpol.2008.09.031 es_ES
dc.description.references Seem, J. E. (2007). Using intelligent data analysis to detect abnormal energy consumption in buildings. Energy and Buildings, 39(1), 52-58. doi:10.1016/j.enbuild.2006.03.033 es_ES
dc.description.references Richardson, I., Thomson, M., Infield, D., & Clifford, C. (2010). Domestic electricity use: A high-resolution energy demand model. Energy and Buildings, 42(10), 1878-1887. doi:10.1016/j.enbuild.2010.05.023 es_ES
dc.description.references Meyers, R. J., Williams, E. D., & Matthews, H. S. (2010). Scoping the potential of monitoring and control technologies to reduce energy use in homes. Energy and Buildings, 42(5), 563-569. doi:10.1016/j.enbuild.2009.10.026 es_ES
dc.description.references Weiss, M., Patel, M. K., Junginger, M., & Blok, K. (2010). Analyzing price and efficiency dynamics of large appliances with the experience curve approach. Energy Policy, 38(2), 770-783. doi:10.1016/j.enpol.2009.10.022 es_ES
dc.description.references Yu, Z., Haghighat, F., Fung, B. C. M., & Yoshino, H. (2010). A decision tree method for building energy demand modeling. Energy and Buildings, 42(10), 1637-1646. doi:10.1016/j.enbuild.2010.04.006 es_ES
dc.description.references Richardson, I., Thomson, M., & Infield, D. (2008). A high-resolution domestic building occupancy model for energy demand simulations. Energy and Buildings, 40(8), 1560-1566. doi:10.1016/j.enbuild.2008.02.006 es_ES
dc.description.references Haldi, F., & Robinson, D. (2008). On the behaviour and adaptation of office occupants. Building and Environment, 43(12), 2163-2177. doi:10.1016/j.buildenv.2008.01.003 es_ES
dc.description.references Bacher, P., & Madsen, H. (2011). Identifying suitable models for the heat dynamics of buildings. Energy and Buildings, 43(7), 1511-1522. doi:10.1016/j.enbuild.2011.02.005 es_ES
dc.description.references Santamouris, M., Mihalakakou, G., Patargias, P., Gaitani, N., Sfakianaki, K., Papaglastra, M., … Zerefos, S. (2007). Using intelligent clustering techniques to classify the energy performance of school buildings. Energy and Buildings, 39(1), 45-51. doi:10.1016/j.enbuild.2006.04.018 es_ES
dc.description.references Van Raaij, W. F., & Verhallen, T. M. M. (1983). Patterns of residential energy behavior. Journal of Economic Psychology, 4(1-2), 85-106. doi:10.1016/0167-4870(83)90047-8 es_ES
dc.description.references Papakostas, K. T., & Sotiropoulos, B. A. (1997). Occupational and energy behaviour patterns in Greek residences. Energy and Buildings, 26(2), 207-213. doi:10.1016/s0378-7788(97)00002-9 es_ES
dc.description.references Aminikhanghahi, S., & Cook, D. J. (2019). Enhancing activity recognition using CPD-based activity segmentation. Pervasive and Mobile Computing, 53, 75-89. doi:10.1016/j.pmcj.2019.01.004 es_ES
dc.description.references Krishnan, N. C., & Cook, D. J. (2014). Activity recognition on streaming sensor data. Pervasive and Mobile Computing, 10, 138-154. doi:10.1016/j.pmcj.2012.07.003 es_ES
dc.description.references Wei, S., Jones, R., & de Wilde, P. (2014). Driving factors for occupant-controlled space heating in residential buildings. Energy and Buildings, 70, 36-44. doi:10.1016/j.enbuild.2013.11.001 es_ES
dc.description.references R. Buswell, L. Webb, P. Cosar-Jorda, D. Marini, S. Brownlee, M. Thomson, S.-.H. Yang, R. Kalawsky, LEEDR project home energy dataset, (2018). doi:10.17028/rd.lboro.6176450.v1. es_ES
dc.description.references Kulinskaya, E., & Koricheva, J. (2010). Use of quality control charts for detection of outliers and temporal trends in cumulative meta-analysis. Research Synthesis Methods, 1(3-4), 297-307. doi:10.1002/jrsm.29 es_ES
dc.description.references Hyndman, R. J., & Khandakar, Y. (2008). Automatic Time Series Forecasting: TheforecastPackage forR. Journal of Statistical Software, 27(3). doi:10.18637/jss.v027.i03 es_ES
dc.description.references D. Montgomery, Introduction to statistical quality control, 2009. doi:10.1002/1521-3773(20010316)40:6<9823::AID−ANIE9823>3.3.CO;2-C. es_ES
dc.description.references Barbeito, I., Zaragoza, S., Tarrío-Saavedra, J., & Naya, S. (2017). Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data. Applied Energy, 190, 1-17. doi:10.1016/j.apenergy.2016.12.100 es_ES
dc.description.references Haines, V., & Mitchell, V. (2014). A persona-based approach to domestic energy retrofit. Building Research & Information, 42(4), 462-476. doi:10.1080/09613218.2014.893161 es_ES
dc.description.references Eon S.E., Annual report2017, n.d.https://www.eon.com/content/dam/eon/eon-com/investors/annual-report/EON_GB17_EN.pdf(accessed December 21, 2018). es_ES
dc.description.references Paradiso, F., Paganelli, F., Giuli, D., & Capobianco, S. (2016). Context-Based Energy Disaggregation in Smart Homes. Future Internet, 8(1), 4. doi:10.3390/fi8010004 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem