- -

Genomic regions influencing intramuscular fat in divergently selected rabbit lines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genomic regions influencing intramuscular fat in divergently selected rabbit lines

Mostrar el registro completo del ítem

Sosa-Madrid, BS.; Hernández, P.; Blasco Mateu, A.; Haley, CS.; Fontanesi, L.; Santacreu Jerez, MA.; Pena, RN.... (2020). Genomic regions influencing intramuscular fat in divergently selected rabbit lines. Animal Genetics. 51:58-69. https://doi.org/10.1111/age.12873

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165281

Ficheros en el ítem

Metadatos del ítem

Título: Genomic regions influencing intramuscular fat in divergently selected rabbit lines
Autor: Sosa-Madrid, Bolivar Samuel Hernández, Pilar Blasco Mateu, Agustín Haley, Chris S. Fontanesi, Luca Santacreu Jerez, María Antonia Pena, Romi N. Navarro, Pau Ibáñez-Escriche, Noelia
Entidad UPV: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Fecha difusión:
Resumen:
[EN] Intramuscular fat (IMF) is one of the main meat quality traits for breeding programs in livestock species. The main objective of this study was to identify genomic regions associated with IMF content comparing two ...[+]
Palabras clave: Divergent selection , Genome-wide association study , Intramuscular fat , Meat quality , Rabbits
Derechos de uso: Reconocimiento (by)
Fuente:
Animal Genetics. (issn: 0268-9146 )
DOI: 10.1111/age.12873
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/age.12873
Código del Proyecto:
info:eu-repo/grantAgreement/UKRI//BBS%2FE%2FD%2F30002276/GB/Complex phenotypes and genotype x environment interactions/
...[+]
info:eu-repo/grantAgreement/UKRI//BBS%2FE%2FD%2F30002276/GB/Complex phenotypes and genotype x environment interactions/
info:eu-repo/grantAgreement/UKRI//MC_PC_U127592696/GB/The Genetics of Complex and Quantitative Traits/
info:eu-repo/grantAgreement/UKRI//MC_PC_U127561128/GB/Quantitative trait locus (QTL) identification in a Croatian isolate/
info:eu-repo/grantAgreement/MINECO//AGL2014-55921-C2-1-P/ES/ESTUDIO GENOMICO Y METABOLOMICO DE VARIAS LINEAS DE SELECCION DIVERGENTE EN CONEJO: EL CONEJO COMO MODELO EXPERIMENTAL/
info:eu-repo/grantAgreement/MINECO//BES-2015-074194/ES/BES-2015-074194/
info:eu-repo/grantAgreement/MINECO//RYC-2016-19764/
[-]
Agradecimientos:
The work was funded by project AGL2014-55921-C2-1-P from National Programme for Fostering Excellence in Scientific and Technical Research -Project I+D. BSS was supported by a FPI grant from the Ministry of Economy and ...[+]
Tipo: Artículo

References

Aken, B. L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S., … Searle, S. M. J. (2016). The Ensembl gene annotation system. Database, 2016, baw093. doi:10.1093/database/baw093

Aloulou, A., Ali, Y. B., Bezzine, S., Gargouri, Y., & Gelb, M. H. (2012). Phospholipases: An Overview. Methods in Molecular Biology, 63-85. doi:10.1007/978-1-61779-600-5_4

Amisten, S., Mohammad Al-Amily, I., Soni, A., Hawkes, R., Atanes, P., Persaud, S. J., … Salehi, A. (2017). Anti-diabetic action of all-trans retinoic acid and the orphan G protein coupled receptor GPRC5C in pancreatic β-cells. Endocrine Journal, 64(3), 325-338. doi:10.1507/endocrj.ej16-0338 [+]
Aken, B. L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S., … Searle, S. M. J. (2016). The Ensembl gene annotation system. Database, 2016, baw093. doi:10.1093/database/baw093

Aloulou, A., Ali, Y. B., Bezzine, S., Gargouri, Y., & Gelb, M. H. (2012). Phospholipases: An Overview. Methods in Molecular Biology, 63-85. doi:10.1007/978-1-61779-600-5_4

Amisten, S., Mohammad Al-Amily, I., Soni, A., Hawkes, R., Atanes, P., Persaud, S. J., … Salehi, A. (2017). Anti-diabetic action of all-trans retinoic acid and the orphan G protein coupled receptor GPRC5C in pancreatic β-cells. Endocrine Journal, 64(3), 325-338. doi:10.1507/endocrj.ej16-0338

Astle, W., & Balding, D. J. (2009). Population Structure and Cryptic Relatedness in Genetic Association Studies. Statistical Science, 24(4). doi:10.1214/09-sts307

Aulchenko, Y. S., Ripke, S., Isaacs, A., & van Duijn, C. M. (2007). GenABEL: an R library for genome-wide association analysis. Bioinformatics, 23(10), 1294-1296. doi:10.1093/bioinformatics/btm108

Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2004). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265. doi:10.1093/bioinformatics/bth457

Beissinger, T. M., Rosa, G. J., Kaeppler, S. M., Gianola, D., & de Leon, N. (2015). Defining window-boundaries for genomic analyses using smoothing spline techniques. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0105-9

Blasco, A., & Pena, R. N. (2018). Current Status of Genomic Maps: Genomic Selection/GBV in Livestock. Animal Biotechnology 2, 61-80. doi:10.1007/978-3-319-92348-2_4

Browning, B. L., & Browning, S. R. (2016). Genotype Imputation with Millions of Reference Samples. The American Journal of Human Genetics, 98(1), 116-126. doi:10.1016/j.ajhg.2015.11.020

Carneiro, M., Afonso, S., Geraldes, A., Garreau, H., Bolet, G., Boucher, S., … Ferrand, N. (2011). The Genetic Structure of Domestic Rabbits. Molecular Biology and Evolution, 28(6), 1801-1816. doi:10.1093/molbev/msr003

Carneiro, M., Rubin, C.-J., Di Palma, F., Albert, F. W., Alföldi, J., Barrio, A. M., … Andersson, L. (2014). Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 345(6200), 1074-1079. doi:10.1126/science.1253714

Cesar, A. S., Regitano, L. C., Mourão, G. B., Tullio, R. R., Lanna, D. P., Nassu, R. T., … Coutinho, L. L. (2014). Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genetics, 15(1). doi:10.1186/1471-2156-15-39

Chaves, V. E., Frasson, D., & Kawashita, N. H. (2011). Several agents and pathways regulate lipolysis in adipocytes. Biochimie, 93(10), 1631-1640. doi:10.1016/j.biochi.2011.05.018

Chen, W.-M., & Abecasis, G. R. (2007). Family-Based Association Tests for Genomewide Association Scans. The American Journal of Human Genetics, 81(5), 913-926. doi:10.1086/521580

Claire D’Andre, H., Paul, W., Shen, X., Jia, X., Zhang, R., Sun, L., & Zhang, X. (2013). Identification and characterization of genes that control fat deposition in chickens. Journal of Animal Science and Biotechnology, 4(1). doi:10.1186/2049-1891-4-43

Do, D. N., Strathe, A. B., Ostersen, T., Pant, S. D., & Kadarmideen, H. N. (2014). Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake. Frontiers in Genetics, 5. doi:10.3389/fgene.2014.00307

Do, D. N., Schenkel, F. S., Miglior, F., Zhao, X., & Ibeagha-Awemu, E. M. (2018). Genome wide association study identifies novel potential candidate genes for bovine milk cholesterol content. Scientific Reports, 8(1). doi:10.1038/s41598-018-31427-0

Fan, B., Du, Z.-Q., Gorbach, D. M., & Rothschild, M. F. (2010). Development and Application of High-density SNP Arrays in Genomic Studies of Domestic Animals. Asian-Australasian Journal of Animal Sciences, 23(7), 833-847. doi:10.5713/ajas.2010.r.03

Gao, Y., Zhang, R., Hu, X., & Li, N. (2007). Application of genomic technologies to the improvement of meat quality of farm animals. Meat Science, 77(1), 36-45. doi:10.1016/j.meatsci.2007.03.026

Garrick, D. J. (2011). The nature, scope and impact of genomic prediction in beef cattle in the United States. Genetics Selection Evolution, 43(1). doi:10.1186/1297-9686-43-17

Garrick, D. J., & Fernando, R. L. (2013). Implementing a QTL Detection Study (GWAS) Using Genomic Prediction Methodology. Genome-Wide Association Studies and Genomic Prediction, 275-298. doi:10.1007/978-1-62703-447-0_11

Gotoh, T., Takahashi, H., Nishimura, T., Kuchida, K., & Mannen, H. (2014). Meat produced by Japanese Black cattle and Wagyu. Animal Frontiers, 4(4), 46-54. doi:10.2527/af.2014-0033

Gotoh, T., Nishimura, T., Kuchida, K., & Mannen, H. (2018). The Japanese Wagyu beef industry: current situation and future prospects — A review. Asian-Australasian Journal of Animal Sciences, 31(7), 933-950. doi:10.5713/ajas.18.0333

Hocquette, J. F., Gondret, F., Baéza, E., Médale, F., Jurie, C., & Pethick, D. W. (2010). Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal, 4(2), 303-319. doi:10.1017/s1751731109991091

Hopkins, D. L., Fogarty, N. M., & Mortimer, S. I. (2011). Genetic related effects on sheep meat quality. Small Ruminant Research, 101(1-3), 160-172. doi:10.1016/j.smallrumres.2011.09.036

Jiao, X., Sherman, B. T., Huang, D. W., Stephens, R., Baseler, M. W., Lane, H. C., & Lempicki, R. A. (2012). DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics, 28(13), 1805-1806. doi:10.1093/bioinformatics/bts251

Jin, C., Wang, W., Liu, Y., & Zhou, Y. (2017). RAI3 knockdown promotes adipogenic differentiation of human adipose-derived stem cells by decreasing β-catenin levels. Biochemical and Biophysical Research Communications, 493(1), 618-624. doi:10.1016/j.bbrc.2017.08.142

Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. doi:10.1080/01621459.1995.10476572

Kim, E.-S., Ros-Freixedes, R., Pena, R. N., Baas, T. J., Estany, J., & Rothschild, M. F. (2015). Identification of signatures of selection for intramuscular fat and backfat thickness in two Duroc populations1. Journal of Animal Science, 93(7), 3292-3302. doi:10.2527/jas.2015-8879

Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., … Ma’ayan, A. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research, 44(W1), W90-W97. doi:10.1093/nar/gkw377

Lander, E., & Kruglyak, L. (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genetics, 11(3), 241-247. doi:10.1038/ng1195-241

Lionikas, A., Meharg, C., Derry, J. M., Ratkevicius, A., Carroll, A. M., Vandenbergh, D. J., & Blizard, D. A. (2012). Resolving candidate genes of mouse skeletal muscle QTL via RNA-Seq and expression network analyses. BMC Genomics, 13(1), 592. doi:10.1186/1471-2164-13-592

López de Maturana, E., Ibáñez-Escriche, N., González-Recio, Ó., Marenne, G., Mehrban, H., Chanock, S. J., … Malats, N. (2014). Next generation modeling in GWAS: comparing different genetic architectures. Human Genetics, 133(10), 1235-1253. doi:10.1007/s00439-014-1461-1

Marras, G., Rossoni, A., Schwarzenbacher, H., Biffani, S., Biscarini, F., & Nicolazzi, E. L. (2016). zanardi: an open-source pipeline for multiple-species genomic analysis of SNP array data. Animal Genetics, 48(1), 121-121. doi:10.1111/age.12485

Martínez-Álvaro, M., Hernández, P., & Blasco, A. (2016). Divergent selection on intramuscular fat in rabbits: Responses to selection and genetic parameters1. Journal of Animal Science, 94(12), 4993-5003. doi:10.2527/jas.2016-0590

Mateescu, R. G., Garrick, D. J., Garmyn, A. J., VanOverbeke, D. L., Mafi, G. G., & Reecy, J. M. (2015). Genetic parameters for sensory traits in longissimus muscle and their associations with tenderness, marbling score, and intramuscular fat in Angus cattle1. Journal of Animal Science, 93(1), 21-27. doi:10.2527/jas.2014-8405

McLarenD.G.&SchultzC.M.(1992)Genetic Selection to Improve the Quality and Composition of Pigs. In45th Reciprocal Meat Conferences Proceedings. Colorado State University pp.115–21.

Migdał, Ł., Kozioł, K., Pałka, S., Migdał, W., Otwinowska-Mindur, A., Kmiecik, M., … Bieniek, J. (2018). Single nucleotide polymorphisms within rabbits ( Oryctolagus cuniculus ) fatty acids binding protein 4 ( FABP4 ) are associated with meat quality traits. Livestock Science, 210, 21-24. doi:10.1016/j.livsci.2018.01.018

Miller, I., Rogel-Gaillard, C., Spina, D., Fontanesi, L., & de Almeida, A. (2014). The Rabbit as an Experimental and Production Animal: From Genomics to Proteomics. Current Protein & Peptide Science, 15(2), 134-145. doi:10.2174/1389203715666140221115135

Mortimer, S. I., van der Werf, J. H. J., Jacob, R. H., Hopkins, D. L., Pannier, L., Pearce, K. L., … Pethick, D. W. (2014). Genetic parameters for meat quality traits of Australian lamb meat. Meat Science, 96(2), 1016-1024. doi:10.1016/j.meatsci.2013.09.007

Nyima, T., Müller, M., Hooiveld, G. J. E. J., Morine, M. J., & Scotti, M. (2016). Nonlinear transcriptomic response to dietary fat intake in the small intestine of C57BL/6J mice. BMC Genomics, 17(1). doi:10.1186/s12864-016-2424-9

Ochsner, K. P., MacNeil, M. D., Lewis, R. M., & Spangler, M. L. (2017). Economic selection index development for Beefmaster cattle I: Terminal breeding objective1. Journal of Animal Science, 95(3), 1063-1070. doi:10.2527/jas.2016.1231

Pannier, L., Gardner, G. E., O’Reilly, R. A., & Pethick, D. W. (2018). Factors affecting lamb eating quality and the potential for their integration into an MSA sheepmeat grading model. Meat Science, 144, 43-52. doi:10.1016/j.meatsci.2018.06.035

Peña, F., Juárez, M., Bonvillani, A., García, P., Polvillo, O., & Domenech, V. (2011). Muscle and genotype effects on fatty acid composition of goat kid intramuscular fat. Italian Journal of Animal Science, 10(3), e40. doi:10.4081/ijas.2011.e40

Pena, R., Ros-Freixedes, R., Tor, M., & Estany, J. (2016). Genetic Marker Discovery in Complex Traits: A Field Example on Fat Content and Composition in Pigs. International Journal of Molecular Sciences, 17(12), 2100. doi:10.3390/ijms17122100

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 81(3), 559-575. doi:10.1086/519795

Ros-Freixedes, R., Gol, S., Pena, R. N., Tor, M., Ibáñez-Escriche, N., Dekkers, J. C. M., & Estany, J. (2016). Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs. PLOS ONE, 11(3), e0152496. doi:10.1371/journal.pone.0152496

Sahana, G., Guldbrandtsen, B., & Lund, M. S. (2011). Genome-wide association study for calving traits in Danish and Swedish Holstein cattle. Journal of Dairy Science, 94(1), 479-486. doi:10.3168/jds.2010-3381

Schmid, M., & Bennewitz, J. (2017). Invited review: Genome-wide association analysis for quantitative traits in livestock – a selective review of statistical models and experimental designs. Archives Animal Breeding, 60(3), 335-346. doi:10.5194/aab-60-335-2017

Song, H., Sun, B., Liao, Y., Xu, D., Guo, W., Wang, T., … Deng, J. (2018). GPRC5A deficiency leads to dysregulated MDM2 via activated EGFR signaling for lung tumor development. International Journal of Cancer, 144(4), 777-787. doi:10.1002/ijc.31726

Spencer, C. C. A., Su, Z., Donnelly, P., & Marchini, J. (2009). Designing Genome-Wide Association Studies: Sample Size, Power, Imputation, and the Choice of Genotyping Chip. PLoS Genetics, 5(5), e1000477. doi:10.1371/journal.pgen.1000477

Stephens, M., & Balding, D. J. (2009). Bayesian statistical methods for genetic association studies. Nature Reviews Genetics, 10(10), 681-690. doi:10.1038/nrg2615

Sukegawa, S., Miyake, T., Ibi, T., Takahagi, Y., Murakami, H., Morimatsu, F., & Yamada, T. (2013). Multiple marker effects of single nucleotide polymorphisms in three genes,AKIRIN2,EDG1andRPL27A, for marbling development in Japanese Black cattle. Animal Science Journal, 85(3), 193-197. doi:10.1111/asj.12108

Sul, J. H., Martin, L. S., & Eskin, E. (2018). Population structure in genetic studies: Confounding factors and mixed models. PLOS Genetics, 14(12), e1007309. doi:10.1371/journal.pgen.1007309

Swierczynski, J. (2014). Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World Journal of Gastroenterology, 20(9), 2279. doi:10.3748/wjg.v20.i9.2279

Toosi, A., Fernando, R. L., & Dekkers, J. C. M. (2018). Genome-wide mapping of quantitative trait loci in admixed populations using mixed linear model and Bayesian multiple regression analysis. Genetics Selection Evolution, 50(1). doi:10.1186/s12711-018-0402-1

Uemoto, Y., Nakano, H., Kikuchi, T., Sato, S., Ishida, M., Shibata, T., … Suzuki, K. (2011). Fine mapping of porcine SSC14 QTL and SCD gene effects on fatty acid composition and melting point of fat in a Duroc purebred population. Animal Genetics, 43(2), 225-228. doi:10.1111/j.1365-2052.2011.02236.x

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & Yang, J. (2017). 10 Years of GWAS Discovery: Biology, Function, and Translation. The American Journal of Human Genetics, 101(1), 5-22. doi:10.1016/j.ajhg.2017.06.005

Vitti, J. J., Grossman, S. R., & Sabeti, P. C. (2013). Detecting Natural Selection in Genomic Data. Annual Review of Genetics, 47(1), 97-120. doi:10.1146/annurev-genet-111212-133526

Wahl, S., Drong, A., Lehne, B., Loh, M., Scott, W. R., Kunze, S., … Yang, Y. (2016). Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature, 541(7635), 81-86. doi:10.1038/nature20784

Wang, W., & Seale, P. (2016). Control of brown and beige fat development. Nature Reviews Molecular Cell Biology, 17(11), 691-702. doi:10.1038/nrm.2016.96

Wang, B., Yang, Q., Harris, C. L., Nelson, M. L., Busboom, J. R., Zhu, M.-J., & Du, M. (2016). Nutrigenomic regulation of adipose tissue development — role of retinoic acid: A review. Meat Science, 120, 100-106. doi:10.1016/j.meatsci.2016.04.003

Wang, X., Tucker, N. R., Rizki, G., Mills, R., Krijger, P. H., de Wit, E., … Boyer, L. A. (2016). Discovery and validation of sub-threshold genome-wide association study loci using epigenomic signatures. eLife, 5. doi:10.7554/elife.10557

Wang, J., Shi, Y., Elzo, M. A., Su, Y., Jia, X., Chen, S., & Lai, S. (2017). Myopalladin gene polymorphism is associated with rabbit meat quality traits. Italian Journal of Animal Science, 16(3), 400-404. doi:10.1080/1828051x.2017.1296333

Won, S., Jung, J., Park, E., & Kim, H. (2018). Identification of genes related to intramuscular fat content of pigs using genome-wide association study. Asian-Australasian Journal of Animal Sciences, 31(2), 157-162. doi:10.5713/ajas.17.0218

Zhang, H., Wang, Z., Wang, S., & Li, H. (2012). Progress of genome wide association study in domestic animals. Journal of Animal Science and Biotechnology, 3(1). doi:10.1186/2049-1891-3-26

Zhang, G.-W., Gao, L., Chen, S.-Y., Zhao, X.-B., Tian, Y.-F., Wang, X., … Lai, S.-J. (2013). Single nucleotide polymorphisms in the FTO gene and their association with growth and meat quality traits in rabbits. Gene, 527(2), 553-557. doi:10.1016/j.gene.2013.06.024

Zomeño, C., Hernández, P., & Blasco, A. (2013). Divergent selection for intramuscular fat content in rabbits. I. Direct response to selection1. Journal of Animal Science, 91(9), 4526-4531. doi:10.2527/jas.2013-6361

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem