- -

On-line product quality and process failure monitoring in freeze-drying of pharmaceutical products

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On-line product quality and process failure monitoring in freeze-drying of pharmaceutical products

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Colucci, Domenico es_ES
dc.contributor.author Prats-Montalbán, José Manuel es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.contributor.author Fissore, Davide es_ES
dc.date.accessioned 2021-04-17T03:32:36Z
dc.date.available 2021-04-17T03:32:36Z
dc.date.issued 2021-03-17 es_ES
dc.identifier.issn 0737-3937 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165282
dc.description This is an Author's Accepted Manuscript of Domenico Colucci, José M. Prats-Montalbán, Alberto Ferrer & Davide Fissore (2021) On-line product quality and process failure monitoring in freeze-drying of pharmaceutical products, Drying Technology, 39:2, 134-147, DOI: 10.1080/07373937.2019.1614949 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/07373937.2019.1614949 es_ES
dc.description.abstract [EN] In this work the information provided by a noninvasive imaging sensor was used to develop two algorithms for real time fault detection and product quality monitoring during the Vacuum Freeze-Drying of single dose pharmaceuticals. Two algorithms based on multivariate statistical techniques, namely Principal Component Analysis and Partial Least Square Regression, were developed and compared. Five batches obtained under Normal Operating Conditions were used to train a reference model of the process; the classification abilities of these algorithms were tested on five more batches simulating different kind of faults. Good classification performances have been obtained with both algorithms. Coupling the information obtained from an infrared camera with that of other variables obtained from the PLC of the equipment, and from the textural analysis performed on the RGB images of the product, strongly improves the performances of the algorithms. The proposed algorithms can account for the heterogeneity of the batch and aim to reduce the off-specification products. es_ES
dc.description.sponsorship This research work was partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under the project DPI2017-82896-C2-1-R. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Drying Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Infrared imaging es_ES
dc.subject Process monitoring es_ES
dc.subject Multivariate statistical process control es_ES
dc.subject Freeze-drying es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title On-line product quality and process failure monitoring in freeze-drying of pharmaceutical products es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/07373937.2019.1614949 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-82896-C2-1-R/ES/DISEÑO, CARACTERIZACION Y AJUSTE OPTIMO DE BIOCIRCUITOS SINTETICOS PARA BIOPRODUCCION CON CONTROL DE CARGA METABOLICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Colucci, D.; Prats-Montalbán, JM.; Ferrer, A.; Fissore, D. (2021). On-line product quality and process failure monitoring in freeze-drying of pharmaceutical products. Drying Technology. 39(2):134-147. https://doi.org/10.1080/07373937.2019.1614949 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/07373937.2019.1614949 es_ES
dc.description.upvformatpinicio 134 es_ES
dc.description.upvformatpfin 147 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 39 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\393541 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Jennings, T. A. (1999). Lyophilization. doi:10.1201/b14424 es_ES
dc.description.references PIKAL, M., SHAH, S., ROY, M., & PUTMAN, R. (1990). The secondary drying stage of freeze drying: drying kinetics as a function of temperature and chamber pressure☆. International Journal of Pharmaceutics, 60(3), 203-207. doi:10.1016/0378-5173(90)90074-e es_ES
dc.description.references U. S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary, Medicine (CVM), Office of Regulatory Affairs (ORA), Pharmaceutical CGMPs. September 2004. Guidance for Industry, PAT – A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance, 2004. https://www.fda.gov/downloads/drugs/guidances/ucm070305.pdf (accessed Jan 2019). es_ES
dc.description.references Barresi, A. A., Pisano, R., Fissore, D., Rasetto, V., Velardi, S. A., Vallan, A., … Galan, M. (2009). Monitoring of the primary drying of a lyophilization process in vials. Chemical Engineering and Processing: Process Intensification, 48(1), 408-423. doi:10.1016/j.cep.2008.05.004 es_ES
dc.description.references Patel, S. M., & Pikal, M. (2009). Process Analytical Technologies (PAT) in freeze-drying of parenteral products. Pharmaceutical Development and Technology, 14(6), 567-587. doi:10.3109/10837450903295116 es_ES
dc.description.references Fissore, D., Pisano, R., & Barresi, A. A. (2018). Process analytical technology for monitoring pharmaceuticals freeze-drying – A comprehensive review. Drying Technology, 36(15), 1839-1865. doi:10.1080/07373937.2018.1440590 es_ES
dc.description.references Barresi, A. A., Pisano, R., Rasetto, V., Fissore, D., & Marchisio, D. L. (2010). Model-Based Monitoring and Control of Industrial Freeze-Drying Processes: Effect of Batch Nonuniformity. Drying Technology, 28(5), 577-590. doi:10.1080/07373931003787934 es_ES
dc.description.references Pisano, R., Fissore, D., & Barresi, A. A. (2014). Intensification of Freeze-Drying for the Pharmaceutical and Food Industries. Modern Drying Technology, 131-161. doi:10.1002/9783527631704.ch05 es_ES
dc.description.references Fissore, D.; Pisano, R.; Barresi, A. On the Use of Temperature Measurement to Monitor a Freeze-Drying Process for Pharmaceuticals. Proceedings of IEEE International Instrumentation and Measurement Technology Conference “I2MTC 2017”, Torino, Italy, May 22–25, 2017; pp. 1276–1281. es_ES
dc.description.references Bosca, S., Corbellini, S., Barresi, A. A., & Fissore, D. (2013). Freeze-Drying Monitoring Using a New Process Analytical Technology: Toward a «Zero Defect» Process. Drying Technology, 31(15), 1744-1755. doi:10.1080/07373937.2013.807431 es_ES
dc.description.references Grassini, S., Parvis, M., & Barresi, A. A. (2013). Inert Thermocouple With Nanometric Thickness for Lyophilization Monitoring. IEEE Transactions on Instrumentation and Measurement, 62(5), 1276-1283. doi:10.1109/tim.2012.2223312 es_ES
dc.description.references Emteborg, H., Zeleny, R., Charoud-Got, J., Martos, G., Lüddeke, J., Schellin, H., & Teipel, K. (2014). Infrared Thermography for Monitoring of Freeze-Drying Processes: Instrumental Developments and Preliminary Results. Journal of Pharmaceutical Sciences, 103(7), 2088-2097. doi:10.1002/jps.24017 es_ES
dc.description.references Van Bockstal, P.-J., Corver, J., De Meyer, L., Vervaet, C., & De Beer, T. (2018). Thermal Imaging as a Noncontact Inline Process Analytical Tool for Product Temperature Monitoring during Continuous Freeze-Drying of Unit Doses. Analytical Chemistry, 90(22), 13591-13599. doi:10.1021/acs.analchem.8b03788 es_ES
dc.description.references Lietta, E., Colucci, D., Distefano, G., & Fissore, D. (2019). On the Use of Infrared Thermography for Monitoring a Vial Freeze-Drying Process. Journal of Pharmaceutical Sciences, 108(1), 391-398. doi:10.1016/j.xphs.2018.07.025 es_ES
dc.description.references Velardi, S. A., & Barresi, A. A. (2008). Development of simplified models for the freeze-drying process and investigation of the optimal operating conditions. Chemical Engineering Research and Design, 86(1), 9-22. doi:10.1016/j.cherd.2007.10.007 es_ES
dc.description.references Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572. doi:10.1080/14786440109462720 es_ES
dc.description.references Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(7), 498-520. doi:10.1037/h0070888 es_ES
dc.description.references Nomikos, P., & MacGregor, J. F. (1994). Monitoring batch processes using multiway principal component analysis. AIChE Journal, 40(8), 1361-1375. doi:10.1002/aic.690400809 es_ES
dc.description.references Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. doi:10.1016/s0169-7439(01)00155-1 es_ES
dc.description.references Nomikos, P., & MacGregor, J. F. (1995). Multi-way partial least squares in monitoring batch processes. Chemometrics and Intelligent Laboratory Systems, 30(1), 97-108. doi:10.1016/0169-7439(95)00043-7 es_ES
dc.description.references Kourti, T. (2006). Process Analytical Technology Beyond Real-Time Analyzers: The Role of Multivariate Analysis. Critical Reviews in Analytical Chemistry, 36(3-4), 257-278. doi:10.1080/10408340600969957 es_ES
dc.description.references Van Sprang, E. N. ., Ramaker, H.-J., Westerhuis, J. A., Gurden, S. P., & Smilde, A. K. (2002). Critical evaluation of approaches for on-line batch process monitoring. Chemical Engineering Science, 57(18), 3979-3991. doi:10.1016/s0009-2509(02)00338-x es_ES
dc.description.references Rato, T. J., Rendall, R., Gomes, V., Chin, S.-T., Chiang, L. H., Saraiva, P. M., & Reis, M. S. (2016). A Systematic Methodology for Comparing Batch Process Monitoring Methods: Part I—Assessing Detection Strength. Industrial & Engineering Chemistry Research, 55(18), 5342-5358. doi:10.1021/acs.iecr.5b04851 es_ES
dc.description.references Rato, T. J., Rendall, R., Gomes, V., Saraiva, P. M., & Reis, M. S. (2018). A Systematic Methodology for Comparing Batch Process Monitoring Methods: Part II—Assessing Detection Speed. Industrial & Engineering Chemistry Research, 57(15), 5338-5350. doi:10.1021/acs.iecr.7b04911 es_ES
dc.description.references Bharati, M. H., & MacGregor, J. F. (1998). Multivariate Image Analysis for Real-Time Process Monitoring and Control. Industrial & Engineering Chemistry Research, 37(12), 4715-4724. doi:10.1021/ie980334l es_ES
dc.description.references Prats-Montalbán, J. M., de Juan, A., & Ferrer, A. (2011). Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems, 107(1), 1-23. doi:10.1016/j.chemolab.2011.03.002 es_ES
dc.description.references Duchesne, C., Liu, J. J., & MacGregor, J. F. (2012). Multivariate image analysis in the process industries: A review. Chemometrics and Intelligent Laboratory Systems, 117, 116-128. doi:10.1016/j.chemolab.2012.04.003 es_ES
dc.description.references Colucci, D., Prats-Montalbán, J. M., Fissore, D., & Ferrer, A. (2019). Application of multivariate image analysis for on-line monitoring of a freeze-drying process for pharmaceutical products in vials. Chemometrics and Intelligent Laboratory Systems, 187, 19-27. doi:10.1016/j.chemolab.2019.02.004 es_ES
dc.description.references Kourti, T. (2005). Application of latent variable methods to process control and multivariate statistical process control in industry. International Journal of Adaptive Control and Signal Processing, 19(4), 213-246. doi:10.1002/acs.859 es_ES
dc.description.references Kourti, T. (2003). Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions. Journal of Chemometrics, 17(1), 93-109. doi:10.1002/cem.778 es_ES
dc.description.references Camacho, J., Picó, J., & Ferrer, A. (2009). The best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter? Analytica Chimica Acta, 642(1-2), 59-68. doi:10.1016/j.aca.2009.02.001 es_ES
dc.description.references Kourti, T., Nomikos, P., & MacGregor, J. F. (1995). Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS. Journal of Process Control, 5(4), 277-284. doi:10.1016/0959-1524(95)00019-m es_ES
dc.description.references Patel, S. M., Doen, T., & Pikal, M. J. (2010). Determination of End Point of Primary Drying in Freeze-Drying Process Control. AAPS PharmSciTech, 11(1), 73-84. doi:10.1208/s12249-009-9362-7 es_ES
dc.description.references Kourti, T., & MacGregor, J. F. (1996). Multivariate SPC Methods for Process and Product Monitoring. Journal of Quality Technology, 28(4), 409-428. doi:10.1080/00224065.1996.11979699 es_ES
dc.description.references Nomikos, P. Statistical Process Control of Batch Processes. PhD diss., McMaster University, Hamilton, Ontario, 1995. es_ES
dc.description.references Arteaga, F., & Ferrer, A. (2002). Dealing with missing data in MSPC: several methods, different interpretations, some examples. Journal of Chemometrics, 16(8-10), 408-418. doi:10.1002/cem.750 es_ES
dc.description.references Arteaga, F., & Ferrer, A. (2005). Framework for regression-based missing data imputation methods in on-line MSPC. Journal of Chemometrics, 19(8), 439-447. doi:10.1002/cem.946 es_ES
dc.description.references García-Muñoz, S., Kourti, T., & MacGregor, J. F. (2004). Model Predictive Monitoring for Batch Processes. Industrial & Engineering Chemistry Research, 43(18), 5929-5941. doi:10.1021/ie034020w es_ES
dc.description.references Camacho, J., Picó, J., & Ferrer, A. (2008). Bilinear modelling of batch processes. Part II: a comparison of PLS soft-sensors. Journal of Chemometrics, 22(10), 533-547. doi:10.1002/cem.1179 es_ES
dc.description.references Folch-Fortuny, A., Arteaga, F., & Ferrer, A. (2017). PLS model building with missing data: New algorithms and a comparative study. Journal of Chemometrics, 31(7), e2897. doi:10.1002/cem.2897 es_ES
dc.description.references Bharati, M. H.; MacGregor, J. F. Texture Analysis of Images Using Principal Component Analysis. Proceeding of SPIE/Photonics Conference on Process Imaging for Automatic Control, Boston, 2000; pp 27–37. es_ES
dc.description.references Bellows, R. J., & King, C. J. (1972). Freeze-drying of aqueous solutions: Maximum allowable operating temperature. Cryobiology, 9(6), 559-561. doi:10.1016/0011-2240(72)90179-4 es_ES
dc.description.references Tsourouflis, S., Flink, J. M., & Karel, M. (1976). Loss of structure in freeze-dried carbohydrates solutions: Effect of temperature, moisture content and composition. Journal of the Science of Food and Agriculture, 27(6), 509-519. doi:10.1002/jsfa.2740270604 es_ES
dc.description.references Prats-Montalbán, J. M., & Ferrer, A. (2014). Statistical process control based on Multivariate Image Analysis: A new proposal for monitoring and defect detection. Computers & Chemical Engineering, 71, 501-511. doi:10.1016/j.compchemeng.2014.09.014 es_ES
dc.description.references Camacho, J., Picó, J., & Ferrer, A. (2008). Multi-phase analysis framework for handling batch process data. Journal of Chemometrics, 22(11-12), 632-643. doi:10.1002/cem.1151 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem