- -

Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles

Mostrar el registro completo del ítem

Vallés-García, C.; Cabrero-Antonino, M.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; Dhakshinamoorthy, A.; García Gómez, H. (2020). Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles. Journal of Colloid and Interface Science. 560:885-893. https://doi.org/10.1016/j.jcis.2019.10.093

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165283

Ficheros en el ítem

Metadatos del ítem

Título: Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles
Autor: Vallés-García, Cristina Cabrero-Antonino, Maria Navalón Oltra, Sergio Alvaro Rodríguez, Maria Mercedes Dhakshinamoorthy, Amarajothi García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] In the present work, nitro functionalized chromium terephthalate [MIL-101(Cr)-NO2] metal-organic framework is prepared and characterized by powder X-ray diffraction (XRD), elemental analysis, infrared spectroscopy ...[+]
Palabras clave: Benzimidazole , Bifunctional solid catalyst , Heterogeneous catalysis , Metal-organic frameworks , Tandem reaction
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Colloid and Interface Science. (issn: 0021-9797 )
DOI: 10.1016/j.jcis.2019.10.093
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jcis.2019.10.093
Código del Proyecto:
info:eu-repo/grantAgreement/DST//EMR%2F2016%2F006500/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099482-A-I00/ES/DESCOMPOSICION FOTOCATALITICA DEL AGUA ASISTIDA POR LUZ VISIBLE EMPLEANDO MATERIALES NOVEDOSOS Y MULTIFUNCIONALES UIO-66%2F67/
info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F214/
Agradecimientos:
AD thanks the University Grants Commission, New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. AD also thanks the Department of Science and Technology, India, for the financial ...[+]
Tipo: Artículo

References

Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275

Bromberg, L., & Hatton, T. A. (2011). Aldehyde-Alcohol Reactions Catalyzed under Mild Conditions by Chromium(III) Terephthalate Metal Organic Framework (MIL-101) and Phosphotungstic Acid Composites. ACS Applied Materials & Interfaces, 3(12), 4756-4764. doi:10.1021/am201246d

Cirujano, F. G., Leyva-Pérez, A., Corma, A., & Llabrés i Xamena, F. X. (2013). MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem, 5(2), 538-549. doi:10.1002/cctc.201200878 [+]
Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275

Bromberg, L., & Hatton, T. A. (2011). Aldehyde-Alcohol Reactions Catalyzed under Mild Conditions by Chromium(III) Terephthalate Metal Organic Framework (MIL-101) and Phosphotungstic Acid Composites. ACS Applied Materials & Interfaces, 3(12), 4756-4764. doi:10.1021/am201246d

Cirujano, F. G., Leyva-Pérez, A., Corma, A., & Llabrés i Xamena, F. X. (2013). MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem, 5(2), 538-549. doi:10.1002/cctc.201200878

Kim, J., Kim, S.-N., Jang, H.-G., Seo, G., & Ahn, W.-S. (2013). CO2 cycloaddition of styrene oxide over MOF catalysts. Applied Catalysis A: General, 453, 175-180. doi:10.1016/j.apcata.2012.12.018

Li, B., Leng, K., Zhang, Y., Dynes, J. J., Wang, J., Hu, Y., … Ma, S. (2015). Metal–Organic Framework Based upon the Synergy of a Brønsted Acid Framework and Lewis Acid Centers as a Highly Efficient Heterogeneous Catalyst for Fixed-Bed Reactions. Journal of the American Chemical Society, 137(12), 4243-4248. doi:10.1021/jacs.5b01352

Mitchell, L., Gonzalez-Santiago, B., Mowat, J. P. S., Gunn, M. E., Williamson, P., Acerbi, N., … Wright, P. A. (2013). Remarkable Lewis acid catalytic performance of the scandium trimesate metal organic framework MIL-100(Sc) for C–C and CN bond-forming reactions. Catal. Sci. Technol., 3(3), 606-617. doi:10.1039/c2cy20577g

Bhattacharjee, S., Chen, C., & Ahn, W.-S. (2014). Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv., 4(94), 52500-52525. doi:10.1039/c4ra11259h

Niknam, E., Panahi, F., Daneshgar, F., Bahrami, F., & Khalafi-Nezhad, A. (2018). Metal–Organic Framework MIL-101(Cr) as an Efficient Heterogeneous Catalyst for Clean Synthesis of Benzoazoles. ACS Omega, 3(12), 17135-17144. doi:10.1021/acsomega.8b02309

Darunte, L. A., Oetomo, A. D., Walton, K. S., Sholl, D. S., & Jones, C. W. (2016). Direct Air Capture of CO2 Using Amine Functionalized MIL-101(Cr). ACS Sustainable Chemistry & Engineering, 4(10), 5761-5768. doi:10.1021/acssuschemeng.6b01692

Gao, L., Li, C.-Y. V., Yung, H., & Chan, K.-Y. (2013). A functionalized MIL-101(Cr) metal–organic framework for enhanced hydrogen release from ammonia borane at low temperature. Chemical Communications, 49(90), 10629. doi:10.1039/c3cc45719b

Hartmann, M., & Fischer, M. (2012). Amino-functionalized basic catalysts with MIL-101 structure. Microporous and Mesoporous Materials, 164, 38-43. doi:10.1016/j.micromeso.2012.06.044

Ma, W., Xu, L., Li, Z., Sun, Y., Bai, Y., & Liu, H. (2016). Post-synthetic modification of an amino-functionalized metal–organic framework for highly efficient enrichment of N-linked glycopeptides. Nanoscale, 8(21), 10908-10912. doi:10.1039/c6nr02490d

Toyao, T., Fujiwaki, M., Horiuchi, Y., & Matsuoka, M. (2013). Application of an amino-functionalised metal–organic framework: an approach to a one-pot acid–base reaction. RSC Advances, 3(44), 21582. doi:10.1039/c3ra44701d

Yu, H., Xie, J., Zhong, Y., Zhang, F., & Zhu, W. (2012). One-pot synthesis of nitroalkenes via the Henry reaction over amino-functionalized MIL-101 catalysts. Catalysis Communications, 29, 101-104. doi:10.1016/j.catcom.2012.09.032

Ma, L., Xu, L., Jiang, H., & Yuan, X. (2019). Comparative research on three types of MIL-101(Cr)-SO3H for esterification of cyclohexene with formic acid. RSC Advances, 9(10), 5692-5700. doi:10.1039/c8ra10366f

Saikia, M., & Saikia, L. (2016). Sulfonic acid-functionalized MIL-101(Cr) as a highly efficient heterogeneous catalyst for one-pot synthesis of 2-amino-4H-chromenes in aqueous medium. RSC Advances, 6(19), 15846-15853. doi:10.1039/c5ra28135k

Zhou, Y.-X., Chen, Y.-Z., Hu, Y., Huang, G., Yu, S.-H., & Jiang, H.-L. (2014). MIL-101-SO3H: A Highly Efficient Brønsted Acid Catalyst for Heterogeneous Alcoholysis of Epoxides under Ambient Conditions. Chemistry - A European Journal, 20(46), 14976-14980. doi:10.1002/chem.201404104

Santiago-Portillo, A., Blandez, J. F., Navalón, S., Álvaro, M., & García, H. (2017). Influence of the organic linker substituent on the catalytic activity of MIL-101(Cr) for the oxidative coupling of benzylamines to imines. Catalysis Science & Technology, 7(6), 1351-1362. doi:10.1039/c6cy02577c

Herbst, A., Khutia, A., & Janiak, C. (2014). Brønsted Instead of Lewis Acidity in Functionalized MIL-101Cr MOFs for Efficient Heterogeneous (nano-MOF) Catalysis in the Condensation Reaction of Aldehydes with Alcohols. Inorganic Chemistry, 53(14), 7319-7333. doi:10.1021/ic5006456

Kumar, A., Maurya, R. A., & Saxena, D. (2009). Diversity-oriented synthesis of benzimidazole, benzoxazole, benzothiazole and quinazolin-4(3H)-one libraries via potassium persulfate–CuSO4-mediated oxidative coupling reactions of aldehydes in aqueous micelles. Molecular Diversity, 14(2), 331-341. doi:10.1007/s11030-009-9170-8

Reddy, L. A., Malakondaiah, G. C., Reddy, A. S., Bhaskar, B. V., Himabindu, V., Bhattacharya, A., & Bandichhor, R. (2009). Scalable Process for the Premix of Esomeprazole. Organic Process Research & Development, 13(6), 1122-1124. doi:10.1021/op9001406

Zhang, Z.-H., Li, T.-S., & Li, J.-J. (2006). A Highly Effective Sulfamic Acid/Methanol Catalytic System for the Synthesis of Benzimidazole Derivatives at Room Temperature. Monatshefte für Chemie - Chemical Monthly, 138(1), 89-94. doi:10.1007/s00706-006-0566-1

Singh, M. P., Sasmal, S., Lu, W., & Chatterjee, M. N. (2000). Synthetic Utility of Catalytic Fe(III)/Fe(II) Redox Cycling Towards Fused Heterocycles: A Facile Access to Substituted Benzimidazole, Bisbenzimidazole and Imidazopyridine Derivatives. Synthesis, 2000(10), 1380-1390. doi:10.1055/s-2000-7111

Trivedi, R., De, S. K., & Gibbs, R. A. (2006). A convenient one-pot synthesis of 2-substituted benzimidazoles. Journal of Molecular Catalysis A: Chemical, 245(1-2), 8-11. doi:10.1016/j.molcata.2005.09.025

Ohsawa, A., Nagata, K., Itoh, T., & Ishikawa, H. (2003). Synthesis of 2-Substituted Benzimidazoles by Reaction of o-Phenylenediamine with Aldehydes in the Presence of Sc(OTf)3. HETEROCYCLES, 61(1), 93. doi:10.3987/com-03-s47

Wang, Y., Ma, H., Li, J., & Wang, J. (2007). Selective Synthesis of 2-Aryl-1-arylmethyl-1H-1,3-benzimidazoles Promoted by Ionic Liquid. HETEROCYCLES, 71(1), 135. doi:10.3987/com-06-10920

Gogoi, P., & Konwar, D. (2006). An efficient and one-pot synthesis of imidazolines and benzimidazoles via anaerobic oxidation of carbon–nitrogen bonds in water. Tetrahedron Letters, 47(1), 79-82. doi:10.1016/j.tetlet.2005.10.134

Kawashita, Y., Nakamichi, N., Kawabata, H., & Hayashi, M. (2003). Direct and Practical Synthesis of 2-Arylbenzoxazoles Promoted by Activated Carbon. Organic Letters, 5(20), 3713-3715. doi:10.1021/ol035393w

Dhakshinamoorthy, A., Kanagaraj, K., & Pitchumani, K. (2011). Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature. Tetrahedron Letters, 52(1), 69-73. doi:10.1016/j.tetlet.2010.10.146

Madasamy, K., Kumaraguru, S., Sankar, V., Mannathan, S., & Kathiresan, M. (2019). A Zn based metal organic framework as a heterogeneous catalyst for C–C bond formation reactions. New Journal of Chemistry, 43(9), 3793-3800. doi:10.1039/c8nj05953e

Kaur, H., Venkateswarulu, M., Kumar, S., Krishnan, V., & Koner, R. R. (2018). A metal–organic framework based multifunctional catalytic platform for organic transformation and environmental remediation. Dalton Transactions, 47(5), 1488-1497. doi:10.1039/c7dt04057a

Homaee, M., Hamadi, H., Nobakht, V., Javaherian, M., & Salahshournia, B. (2019). Ultrasound-assisted synthesis of UiO-66-NHSO3H via post-synthetic modification as a heterogeneous Brønsted acid catalyst. Polyhedron, 165, 152-161. doi:10.1016/j.poly.2019.03.009

Kardanpour, R., Tangestaninejad, S., Mirkhani, V., Moghadam, M., Mohammadpoor-Baltork, I., & Zadehahmadi, F. (2016). Anchoring of Cu(II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles. Journal of Solid State Chemistry, 235, 145-153. doi:10.1016/j.jssc.2015.11.019

Canivet, J., Vandichel, M., & Farrusseng, D. (2016). Origin of highly active metal–organic framework catalysts: defects? Defects! Dalton Transactions, 45(10), 4090-4099. doi:10.1039/c5dt03522h

Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2015). Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 44(7), 1922-1947. doi:10.1039/c4cs00254g

Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., … Zhou, H. (2018). Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1704303. doi:10.1002/adma.201704303

Dhakshinamoorthy, A., & Garcia, H. (2014). Cascade Reactions Catalyzed by Metal Organic Frameworks. ChemSusChem, 7(9), 2392-2410. doi:10.1002/cssc.201402148

Hu, M.-L., Safarifard, V., Doustkhah, E., Rostamnia, S., Morsali, A., Nouruzi, N., … Akhbari, K. (2018). Taking organic reactions over metal-organic frameworks as heterogeneous catalysis. Microporous and Mesoporous Materials, 256, 111-127. doi:10.1016/j.micromeso.2017.07.057

Xu, C., Fang, R., Luque, R., Chen, L., & Li, Y. (2019). Functional metal–organic frameworks for catalytic applications. Coordination Chemistry Reviews, 388, 268-292. doi:10.1016/j.ccr.2019.03.005

Azarifar, D., Ghorbani-Vaghei, R., Daliran, S., & Oveisi, A. R. (2017). A Multifunctional Zirconium-Based Metal-Organic Framework for the One-Pot Tandem Photooxidative Passerini Three-Component Reaction of Alcohols. ChemCatChem, 9(11), 1992-2000. doi:10.1002/cctc.201700169

Ghaleno, M. R., Ghaffari-Moghaddam, M., Khajeh, M., Reza Oveisi, A., & Bohlooli, M. (2019). Iron species supported on a mesoporous zirconium metal-organic framework for visible light driven synthesis of quinazolin-4(3H)-ones through one-pot three-step tandem reaction. Journal of Colloid and Interface Science, 535, 214-226. doi:10.1016/j.jcis.2018.09.099

Kirchon, A., Feng, L., Drake, H. F., Joseph, E. A., & Zhou, H.-C. (2018). From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chemical Society Reviews, 47(23), 8611-8638. doi:10.1039/c8cs00688a

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Framework Solids. ChemCatChem, 2(11), 1438-1443. doi:10.1002/cctc.201000175

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework. ACS Catalysis, 1(8), 836-840. doi:10.1021/cs200128t

Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141

Santiago-Portillo, A., Navalón, S., Álvaro, M., & García, H. (2018). Generating and optimizing the catalytic activity in UiO-66 for aerobic oxidation of alkenes by post-synthetic exchange Ti atoms combined with ligand substitution. Journal of Catalysis, 365, 450-463. doi:10.1016/j.jcat.2018.07.032

Santiago-Portillo, A., Navalón, S., Cirujano, F. G., Xamena, F. X. L. i, Alvaro, M., & Garcia, H. (2015). MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 5(6), 3216-3224. doi:10.1021/acscatal.5b00411

Santiago-Portillo, A., Navalón, S., Concepción, P., Álvaro, M., & García, H. (2017). Influence of Terephthalic Acid Substituents on the Catalytic Activity of MIL-101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 9(13), 2506-2511. doi:10.1002/cctc.201700236

Lammert, M., Bernt, S., Vermoortele, F., De Vos, D. E., & Stock, N. (2013). Single- and Mixed-Linker Cr-MIL-101 Derivatives: A High-Throughput Investigation. Inorganic Chemistry, 52(15), 8521-8528. doi:10.1021/ic4005328

Bernt, S., Guillerm, V., Serre, C., & Stock, N. (2011). Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chemical Communications, 47(10), 2838. doi:10.1039/c0cc04526h

Li, B., Zhang, Y., Ma, D., Li, L., Li, G., Li, G., … Feng, S. (2012). A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chemical Communications, 48(49), 6151. doi:10.1039/c2cc32384b

Kandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., … Lillerud, K. P. (2010). Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632-6640. doi:10.1021/cm102601v

Bansal, Y., & Silakari, O. (2012). The therapeutic journey of benzimidazoles: A review. Bioorganic & Medicinal Chemistry, 20(21), 6208-6236. doi:10.1016/j.bmc.2012.09.013

Kumar, D., Kommi, D. N., Chebolu, R., Garg, S. K., Kumar, R., & Chakraborti, A. K. (2013). Selectivity control during the solid supported protic acids catalysed synthesis of 1,2-disubstituted benzimidazoles and mechanistic insight to rationalize selectivity. RSC Adv., 3(1), 91-98. doi:10.1039/c2ra21994h

Wang, R., Lu, X., Yu, X., Shi, L., & Sun, Y. (2007). Acid-catalyzed solvent-free synthesis of 2-arylbenzimidazoles under microwave irradiation. Journal of Molecular Catalysis A: Chemical, 266(1-2), 198-201. doi:10.1016/j.molcata.2006.04.071

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2015). Deactivation of Cu3(BTC)2 in the Synthesis of 2-Phenylquinoxaline. Catalysis Letters, 145(8), 1600-1605. doi:10.1007/s10562-015-1497-4

Chen, J., Li, K., Chen, L., Liu, R., Huang, X., & Ye, D. (2014). Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chem., 16(5), 2490-2499. doi:10.1039/c3gc42414f

Herbst, A., & Janiak, C. (2017). MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm, 19(29), 4092-4117. doi:10.1039/c6ce01782g

Inamdar, S. M., More, V. K., & Mandal, S. K. (2013). CuO nano-particles supported on silica, a new catalyst for facile synthesis of benzimidazoles, benzothiazoles and benzoxazoles. Tetrahedron Letters, 54(6), 579-583. doi:10.1016/j.tetlet.2012.11.091

Soleimani, E., Khodaei, M. M., Yazdani, H., Saei, P., & Zavar Reza, J. (2015). Synthesis of 2-substituted benzimidazoles and benzothiazoles using Ag2CO3/Celite as an efficient solid catalyst. Journal of the Iranian Chemical Society, 12(7), 1281-1285. doi:10.1007/s13738-015-0592-1

Bardajee, G. R., Mohammadi, M., Yari, H., & Ghaedi, A. (2016). Simple and efficient protocol for the synthesis of benzoxazole, benzoimidazole and benzothiazole heterocycles using Fe(III)–Schiff base/SBA-15 as a nanocatalyst. Chinese Chemical Letters, 27(2), 265-270. doi:10.1016/j.cclet.2015.10.011

Sharghi, H., Asemani, O., & Tabaei, S. M. H. (2008). Simple and mild procedures for synthesis of benzimidazole derivatives using heterogeneous catalyst systems. Journal of Heterocyclic Chemistry, 45(5), 1293-1298. doi:10.1002/jhet.5570450506

Adharvana Chari, M., Shobha, D., & Sasaki, T. (2011). Room temperature synthesis of benzimidazole derivatives using reusable cobalt hydroxide (II) and cobalt oxide (II) as efficient solid catalysts. Tetrahedron Letters, 52(43), 5575-5580. doi:10.1016/j.tetlet.2011.08.047

Teimouri, A., Chermahini, A. N., Salavati, H., & Ghorbanian, L. (2013). An efficient and one-pot synthesis of benzimidazoles, benzoxazoles, benzothiazoles and quinoxalines catalyzed via nano-solid acid catalysts. Journal of Molecular Catalysis A: Chemical, 373, 38-45. doi:10.1016/j.molcata.2013.02.030

Azizian, J., Torabi, P., & Noei, J. (2016). Synthesis of benzimidazoles and benzoxazoles using TiCl3OTf in ethanol at room temperature. Tetrahedron Letters, 57(2), 185-188. doi:10.1016/j.tetlet.2015.11.092

Digwal, C. S., Yadav, U., Sakla, A. P., Sri Ramya, P. V., Aaghaz, S., & Kamal, A. (2016). VOSO 4 catalyzed highly efficient synthesis of benzimidazoles, benzothiazoles, and quinoxalines. Tetrahedron Letters, 57(36), 4012-4016. doi:10.1016/j.tetlet.2016.06.074

Vimont, A., Thibault-Starzyk, F., & Daturi, M. (2010). Analysing and understanding the active site by IR spectroscopy. Chemical Society Reviews, 39(12), 4928. doi:10.1039/b919543m

Leclerc, H., Vimont, A., Lavalley, J.-C., Daturi, M., Wiersum, A. D., Llwellyn, P. L., … Serre, C. (2011). Infrared study of the influence of reducible iron(iii) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal–organic framework MIL-100. Physical Chemistry Chemical Physics, 13(24), 11748. doi:10.1039/c1cp20502a

Vimont, A., Goupil, J.-M., Lavalley, J.-C., Daturi, M., Surblé, S., Serre, C., … Audebrand, N. (2006). Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate. Journal of the American Chemical Society, 128(10), 3218-3227. doi:10.1021/ja056906s

Volkringer, C., Leclerc, H., Lavalley, J.-C., Loiseau, T., Férey, G., Daturi, M., & Vimont, A. (2012). Infrared Spectroscopy Investigation of the Acid Sites in the Metal–Organic Framework Aluminum Trimesate MIL-100(Al). The Journal of Physical Chemistry C, 116(9), 5710-5719. doi:10.1021/jp210671t

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem