Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275
Bromberg, L., & Hatton, T. A. (2011). Aldehyde-Alcohol Reactions Catalyzed under Mild Conditions by Chromium(III) Terephthalate Metal Organic Framework (MIL-101) and Phosphotungstic Acid Composites. ACS Applied Materials & Interfaces, 3(12), 4756-4764. doi:10.1021/am201246d
Cirujano, F. G., Leyva-Pérez, A., Corma, A., & Llabrés i Xamena, F. X. (2013). MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem, 5(2), 538-549. doi:10.1002/cctc.201200878
[+]
Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275
Bromberg, L., & Hatton, T. A. (2011). Aldehyde-Alcohol Reactions Catalyzed under Mild Conditions by Chromium(III) Terephthalate Metal Organic Framework (MIL-101) and Phosphotungstic Acid Composites. ACS Applied Materials & Interfaces, 3(12), 4756-4764. doi:10.1021/am201246d
Cirujano, F. G., Leyva-Pérez, A., Corma, A., & Llabrés i Xamena, F. X. (2013). MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem, 5(2), 538-549. doi:10.1002/cctc.201200878
Kim, J., Kim, S.-N., Jang, H.-G., Seo, G., & Ahn, W.-S. (2013). CO2 cycloaddition of styrene oxide over MOF catalysts. Applied Catalysis A: General, 453, 175-180. doi:10.1016/j.apcata.2012.12.018
Li, B., Leng, K., Zhang, Y., Dynes, J. J., Wang, J., Hu, Y., … Ma, S. (2015). Metal–Organic Framework Based upon the Synergy of a Brønsted Acid Framework and Lewis Acid Centers as a Highly Efficient Heterogeneous Catalyst for Fixed-Bed Reactions. Journal of the American Chemical Society, 137(12), 4243-4248. doi:10.1021/jacs.5b01352
Mitchell, L., Gonzalez-Santiago, B., Mowat, J. P. S., Gunn, M. E., Williamson, P., Acerbi, N., … Wright, P. A. (2013). Remarkable Lewis acid catalytic performance of the scandium trimesate metal organic framework MIL-100(Sc) for C–C and CN bond-forming reactions. Catal. Sci. Technol., 3(3), 606-617. doi:10.1039/c2cy20577g
Bhattacharjee, S., Chen, C., & Ahn, W.-S. (2014). Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv., 4(94), 52500-52525. doi:10.1039/c4ra11259h
Niknam, E., Panahi, F., Daneshgar, F., Bahrami, F., & Khalafi-Nezhad, A. (2018). Metal–Organic Framework MIL-101(Cr) as an Efficient Heterogeneous Catalyst for Clean Synthesis of Benzoazoles. ACS Omega, 3(12), 17135-17144. doi:10.1021/acsomega.8b02309
Darunte, L. A., Oetomo, A. D., Walton, K. S., Sholl, D. S., & Jones, C. W. (2016). Direct Air Capture of CO2 Using Amine Functionalized MIL-101(Cr). ACS Sustainable Chemistry & Engineering, 4(10), 5761-5768. doi:10.1021/acssuschemeng.6b01692
Gao, L., Li, C.-Y. V., Yung, H., & Chan, K.-Y. (2013). A functionalized MIL-101(Cr) metal–organic framework for enhanced hydrogen release from ammonia borane at low temperature. Chemical Communications, 49(90), 10629. doi:10.1039/c3cc45719b
Hartmann, M., & Fischer, M. (2012). Amino-functionalized basic catalysts with MIL-101 structure. Microporous and Mesoporous Materials, 164, 38-43. doi:10.1016/j.micromeso.2012.06.044
Ma, W., Xu, L., Li, Z., Sun, Y., Bai, Y., & Liu, H. (2016). Post-synthetic modification of an amino-functionalized metal–organic framework for highly efficient enrichment of N-linked glycopeptides. Nanoscale, 8(21), 10908-10912. doi:10.1039/c6nr02490d
Toyao, T., Fujiwaki, M., Horiuchi, Y., & Matsuoka, M. (2013). Application of an amino-functionalised metal–organic framework: an approach to a one-pot acid–base reaction. RSC Advances, 3(44), 21582. doi:10.1039/c3ra44701d
Yu, H., Xie, J., Zhong, Y., Zhang, F., & Zhu, W. (2012). One-pot synthesis of nitroalkenes via the Henry reaction over amino-functionalized MIL-101 catalysts. Catalysis Communications, 29, 101-104. doi:10.1016/j.catcom.2012.09.032
Ma, L., Xu, L., Jiang, H., & Yuan, X. (2019). Comparative research on three types of MIL-101(Cr)-SO3H for esterification of cyclohexene with formic acid. RSC Advances, 9(10), 5692-5700. doi:10.1039/c8ra10366f
Saikia, M., & Saikia, L. (2016). Sulfonic acid-functionalized MIL-101(Cr) as a highly efficient heterogeneous catalyst for one-pot synthesis of 2-amino-4H-chromenes in aqueous medium. RSC Advances, 6(19), 15846-15853. doi:10.1039/c5ra28135k
Zhou, Y.-X., Chen, Y.-Z., Hu, Y., Huang, G., Yu, S.-H., & Jiang, H.-L. (2014). MIL-101-SO3H: A Highly Efficient Brønsted Acid Catalyst for Heterogeneous Alcoholysis of Epoxides under Ambient Conditions. Chemistry - A European Journal, 20(46), 14976-14980. doi:10.1002/chem.201404104
Santiago-Portillo, A., Blandez, J. F., Navalón, S., Álvaro, M., & García, H. (2017). Influence of the organic linker substituent on the catalytic activity of MIL-101(Cr) for the oxidative coupling of benzylamines to imines. Catalysis Science & Technology, 7(6), 1351-1362. doi:10.1039/c6cy02577c
Herbst, A., Khutia, A., & Janiak, C. (2014). Brønsted Instead of Lewis Acidity in Functionalized MIL-101Cr MOFs for Efficient Heterogeneous (nano-MOF) Catalysis in the Condensation Reaction of Aldehydes with Alcohols. Inorganic Chemistry, 53(14), 7319-7333. doi:10.1021/ic5006456
Kumar, A., Maurya, R. A., & Saxena, D. (2009). Diversity-oriented synthesis of benzimidazole, benzoxazole, benzothiazole and quinazolin-4(3H)-one libraries via potassium persulfate–CuSO4-mediated oxidative coupling reactions of aldehydes in aqueous micelles. Molecular Diversity, 14(2), 331-341. doi:10.1007/s11030-009-9170-8
Reddy, L. A., Malakondaiah, G. C., Reddy, A. S., Bhaskar, B. V., Himabindu, V., Bhattacharya, A., & Bandichhor, R. (2009). Scalable Process for the Premix of Esomeprazole. Organic Process Research & Development, 13(6), 1122-1124. doi:10.1021/op9001406
Zhang, Z.-H., Li, T.-S., & Li, J.-J. (2006). A Highly Effective Sulfamic Acid/Methanol Catalytic System for the Synthesis of Benzimidazole Derivatives at Room Temperature. Monatshefte für Chemie - Chemical Monthly, 138(1), 89-94. doi:10.1007/s00706-006-0566-1
Singh, M. P., Sasmal, S., Lu, W., & Chatterjee, M. N. (2000). Synthetic Utility of Catalytic Fe(III)/Fe(II) Redox Cycling Towards Fused Heterocycles: A Facile Access to Substituted Benzimidazole, Bisbenzimidazole and Imidazopyridine Derivatives. Synthesis, 2000(10), 1380-1390. doi:10.1055/s-2000-7111
Trivedi, R., De, S. K., & Gibbs, R. A. (2006). A convenient one-pot synthesis of 2-substituted benzimidazoles. Journal of Molecular Catalysis A: Chemical, 245(1-2), 8-11. doi:10.1016/j.molcata.2005.09.025
Ohsawa, A., Nagata, K., Itoh, T., & Ishikawa, H. (2003). Synthesis of 2-Substituted Benzimidazoles by Reaction of o-Phenylenediamine with Aldehydes in the Presence of Sc(OTf)3. HETEROCYCLES, 61(1), 93. doi:10.3987/com-03-s47
Wang, Y., Ma, H., Li, J., & Wang, J. (2007). Selective Synthesis of 2-Aryl-1-arylmethyl-1H-1,3-benzimidazoles Promoted by Ionic Liquid. HETEROCYCLES, 71(1), 135. doi:10.3987/com-06-10920
Gogoi, P., & Konwar, D. (2006). An efficient and one-pot synthesis of imidazolines and benzimidazoles via anaerobic oxidation of carbon–nitrogen bonds in water. Tetrahedron Letters, 47(1), 79-82. doi:10.1016/j.tetlet.2005.10.134
Kawashita, Y., Nakamichi, N., Kawabata, H., & Hayashi, M. (2003). Direct and Practical Synthesis of 2-Arylbenzoxazoles Promoted by Activated Carbon. Organic Letters, 5(20), 3713-3715. doi:10.1021/ol035393w
Dhakshinamoorthy, A., Kanagaraj, K., & Pitchumani, K. (2011). Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature. Tetrahedron Letters, 52(1), 69-73. doi:10.1016/j.tetlet.2010.10.146
Madasamy, K., Kumaraguru, S., Sankar, V., Mannathan, S., & Kathiresan, M. (2019). A Zn based metal organic framework as a heterogeneous catalyst for C–C bond formation reactions. New Journal of Chemistry, 43(9), 3793-3800. doi:10.1039/c8nj05953e
Kaur, H., Venkateswarulu, M., Kumar, S., Krishnan, V., & Koner, R. R. (2018). A metal–organic framework based multifunctional catalytic platform for organic transformation and environmental remediation. Dalton Transactions, 47(5), 1488-1497. doi:10.1039/c7dt04057a
Homaee, M., Hamadi, H., Nobakht, V., Javaherian, M., & Salahshournia, B. (2019). Ultrasound-assisted synthesis of UiO-66-NHSO3H via post-synthetic modification as a heterogeneous Brønsted acid catalyst. Polyhedron, 165, 152-161. doi:10.1016/j.poly.2019.03.009
Kardanpour, R., Tangestaninejad, S., Mirkhani, V., Moghadam, M., Mohammadpoor-Baltork, I., & Zadehahmadi, F. (2016). Anchoring of Cu(II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles. Journal of Solid State Chemistry, 235, 145-153. doi:10.1016/j.jssc.2015.11.019
Canivet, J., Vandichel, M., & Farrusseng, D. (2016). Origin of highly active metal–organic framework catalysts: defects? Defects! Dalton Transactions, 45(10), 4090-4099. doi:10.1039/c5dt03522h
Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2015). Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 44(7), 1922-1947. doi:10.1039/c4cs00254g
Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., … Zhou, H. (2018). Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1704303. doi:10.1002/adma.201704303
Dhakshinamoorthy, A., & Garcia, H. (2014). Cascade Reactions Catalyzed by Metal Organic Frameworks. ChemSusChem, 7(9), 2392-2410. doi:10.1002/cssc.201402148
Hu, M.-L., Safarifard, V., Doustkhah, E., Rostamnia, S., Morsali, A., Nouruzi, N., … Akhbari, K. (2018). Taking organic reactions over metal-organic frameworks as heterogeneous catalysis. Microporous and Mesoporous Materials, 256, 111-127. doi:10.1016/j.micromeso.2017.07.057
Xu, C., Fang, R., Luque, R., Chen, L., & Li, Y. (2019). Functional metal–organic frameworks for catalytic applications. Coordination Chemistry Reviews, 388, 268-292. doi:10.1016/j.ccr.2019.03.005
Azarifar, D., Ghorbani-Vaghei, R., Daliran, S., & Oveisi, A. R. (2017). A Multifunctional Zirconium-Based Metal-Organic Framework for the One-Pot Tandem Photooxidative Passerini Three-Component Reaction of Alcohols. ChemCatChem, 9(11), 1992-2000. doi:10.1002/cctc.201700169
Ghaleno, M. R., Ghaffari-Moghaddam, M., Khajeh, M., Reza Oveisi, A., & Bohlooli, M. (2019). Iron species supported on a mesoporous zirconium metal-organic framework for visible light driven synthesis of quinazolin-4(3H)-ones through one-pot three-step tandem reaction. Journal of Colloid and Interface Science, 535, 214-226. doi:10.1016/j.jcis.2018.09.099
Kirchon, A., Feng, L., Drake, H. F., Joseph, E. A., & Zhou, H.-C. (2018). From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chemical Society Reviews, 47(23), 8611-8638. doi:10.1039/c8cs00688a
Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Framework Solids. ChemCatChem, 2(11), 1438-1443. doi:10.1002/cctc.201000175
Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework. ACS Catalysis, 1(8), 836-840. doi:10.1021/cs200128t
Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141
Santiago-Portillo, A., Navalón, S., Álvaro, M., & García, H. (2018). Generating and optimizing the catalytic activity in UiO-66 for aerobic oxidation of alkenes by post-synthetic exchange Ti atoms combined with ligand substitution. Journal of Catalysis, 365, 450-463. doi:10.1016/j.jcat.2018.07.032
Santiago-Portillo, A., Navalón, S., Cirujano, F. G., Xamena, F. X. L. i, Alvaro, M., & Garcia, H. (2015). MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 5(6), 3216-3224. doi:10.1021/acscatal.5b00411
Santiago-Portillo, A., Navalón, S., Concepción, P., Álvaro, M., & García, H. (2017). Influence of Terephthalic Acid Substituents on the Catalytic Activity of MIL-101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 9(13), 2506-2511. doi:10.1002/cctc.201700236
Lammert, M., Bernt, S., Vermoortele, F., De Vos, D. E., & Stock, N. (2013). Single- and Mixed-Linker Cr-MIL-101 Derivatives: A High-Throughput Investigation. Inorganic Chemistry, 52(15), 8521-8528. doi:10.1021/ic4005328
Bernt, S., Guillerm, V., Serre, C., & Stock, N. (2011). Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chemical Communications, 47(10), 2838. doi:10.1039/c0cc04526h
Li, B., Zhang, Y., Ma, D., Li, L., Li, G., Li, G., … Feng, S. (2012). A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chemical Communications, 48(49), 6151. doi:10.1039/c2cc32384b
Kandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., … Lillerud, K. P. (2010). Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632-6640. doi:10.1021/cm102601v
Bansal, Y., & Silakari, O. (2012). The therapeutic journey of benzimidazoles: A review. Bioorganic & Medicinal Chemistry, 20(21), 6208-6236. doi:10.1016/j.bmc.2012.09.013
Kumar, D., Kommi, D. N., Chebolu, R., Garg, S. K., Kumar, R., & Chakraborti, A. K. (2013). Selectivity control during the solid supported protic acids catalysed synthesis of 1,2-disubstituted benzimidazoles and mechanistic insight to rationalize selectivity. RSC Adv., 3(1), 91-98. doi:10.1039/c2ra21994h
Wang, R., Lu, X., Yu, X., Shi, L., & Sun, Y. (2007). Acid-catalyzed solvent-free synthesis of 2-arylbenzimidazoles under microwave irradiation. Journal of Molecular Catalysis A: Chemical, 266(1-2), 198-201. doi:10.1016/j.molcata.2006.04.071
Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2015). Deactivation of Cu3(BTC)2 in the Synthesis of 2-Phenylquinoxaline. Catalysis Letters, 145(8), 1600-1605. doi:10.1007/s10562-015-1497-4
Chen, J., Li, K., Chen, L., Liu, R., Huang, X., & Ye, D. (2014). Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chem., 16(5), 2490-2499. doi:10.1039/c3gc42414f
Herbst, A., & Janiak, C. (2017). MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm, 19(29), 4092-4117. doi:10.1039/c6ce01782g
Inamdar, S. M., More, V. K., & Mandal, S. K. (2013). CuO nano-particles supported on silica, a new catalyst for facile synthesis of benzimidazoles, benzothiazoles and benzoxazoles. Tetrahedron Letters, 54(6), 579-583. doi:10.1016/j.tetlet.2012.11.091
Soleimani, E., Khodaei, M. M., Yazdani, H., Saei, P., & Zavar Reza, J. (2015). Synthesis of 2-substituted benzimidazoles and benzothiazoles using Ag2CO3/Celite as an efficient solid catalyst. Journal of the Iranian Chemical Society, 12(7), 1281-1285. doi:10.1007/s13738-015-0592-1
Bardajee, G. R., Mohammadi, M., Yari, H., & Ghaedi, A. (2016). Simple and efficient protocol for the synthesis of benzoxazole, benzoimidazole and benzothiazole heterocycles using Fe(III)–Schiff base/SBA-15 as a nanocatalyst. Chinese Chemical Letters, 27(2), 265-270. doi:10.1016/j.cclet.2015.10.011
Sharghi, H., Asemani, O., & Tabaei, S. M. H. (2008). Simple and mild procedures for synthesis of benzimidazole derivatives using heterogeneous catalyst systems. Journal of Heterocyclic Chemistry, 45(5), 1293-1298. doi:10.1002/jhet.5570450506
Adharvana Chari, M., Shobha, D., & Sasaki, T. (2011). Room temperature synthesis of benzimidazole derivatives using reusable cobalt hydroxide (II) and cobalt oxide (II) as efficient solid catalysts. Tetrahedron Letters, 52(43), 5575-5580. doi:10.1016/j.tetlet.2011.08.047
Teimouri, A., Chermahini, A. N., Salavati, H., & Ghorbanian, L. (2013). An efficient and one-pot synthesis of benzimidazoles, benzoxazoles, benzothiazoles and quinoxalines catalyzed via nano-solid acid catalysts. Journal of Molecular Catalysis A: Chemical, 373, 38-45. doi:10.1016/j.molcata.2013.02.030
Azizian, J., Torabi, P., & Noei, J. (2016). Synthesis of benzimidazoles and benzoxazoles using TiCl3OTf in ethanol at room temperature. Tetrahedron Letters, 57(2), 185-188. doi:10.1016/j.tetlet.2015.11.092
Digwal, C. S., Yadav, U., Sakla, A. P., Sri Ramya, P. V., Aaghaz, S., & Kamal, A. (2016). VOSO 4 catalyzed highly efficient synthesis of benzimidazoles, benzothiazoles, and quinoxalines. Tetrahedron Letters, 57(36), 4012-4016. doi:10.1016/j.tetlet.2016.06.074
Vimont, A., Thibault-Starzyk, F., & Daturi, M. (2010). Analysing and understanding the active site by IR spectroscopy. Chemical Society Reviews, 39(12), 4928. doi:10.1039/b919543m
Leclerc, H., Vimont, A., Lavalley, J.-C., Daturi, M., Wiersum, A. D., Llwellyn, P. L., … Serre, C. (2011). Infrared study of the influence of reducible iron(iii) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal–organic framework MIL-100. Physical Chemistry Chemical Physics, 13(24), 11748. doi:10.1039/c1cp20502a
Vimont, A., Goupil, J.-M., Lavalley, J.-C., Daturi, M., Surblé, S., Serre, C., … Audebrand, N. (2006). Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate. Journal of the American Chemical Society, 128(10), 3218-3227. doi:10.1021/ja056906s
Volkringer, C., Leclerc, H., Lavalley, J.-C., Loiseau, T., Férey, G., Daturi, M., & Vimont, A. (2012). Infrared Spectroscopy Investigation of the Acid Sites in the Metal–Organic Framework Aluminum Trimesate MIL-100(Al). The Journal of Physical Chemistry C, 116(9), 5710-5719. doi:10.1021/jp210671t
[-]