- -

Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vallés-García, Cristina es_ES
dc.contributor.author Cabrero-Antonino, Maria es_ES
dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author Dhakshinamoorthy, Amarajothi es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-04-17T03:32:40Z
dc.date.available 2021-04-17T03:32:40Z
dc.date.issued 2020-02-15 es_ES
dc.identifier.issn 0021-9797 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165283
dc.description.abstract [EN] In the present work, nitro functionalized chromium terephthalate [MIL-101(Cr)-NO2] metal-organic framework is prepared and characterized by powder X-ray diffraction (XRD), elemental analysis, infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Brun auer-Emmett-Teller (BET) surface area. The inherent Lewis acidity of MIL-101(Cr)-NO2 is confirmed by FT-IR spectroscopy using CD3CN as a probe molecule. The performance of MIL-101(Cr)-NO2 as bifunctional catalyst (acid and redox) promoting the synthesis of wide range of benzimidazoles has been examined by catalyzed condensation on acid sites and subsequent oxidative dehydrogenation. The catalytic activity of MIL-101(Cr)-NO2 is found to be superior than analogues catalysts like MIL-101(Cr)-S0(3)H, MIL-101(Cr)-NH2, U10-66(Zr), Ui0-66(Zr)-NO2, MIL-100(Fe) and Cu-3(BTC)(2) (BTC: 1,35-benzenetricarboxylate) under identical reaction conditions, The structural stability of MIL-101(Cr)-NO2 is supported by leaching analysis and reusability tests. MIL-101(Cr)-NO2 solid is used five times without decay in its activity. Comparison of the fresh and five times used MIL-101(Cr)-NO2 solids by powder XRD, SEM and elemental analysis indicate identical crystallinity, morphology and the absence of chromium leaching, respectively. (C) 2019 Elsevier Inc. All rights reserved. es_ES
dc.description.sponsorship AD thanks the University Grants Commission, New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. AD also thanks the Department of Science and Technology, India, for the financial support through Extra Mural Research Funding (EMR/2016/006500). Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO21) and Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. S.N. thanks financial support by the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudication de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), Ministerio de Ciencia, Innovation y Universidades RTI2018-099482-A-I00 project and Generalitat Valenciana grupos de investigacion consolidables 2019 (AICO/2019/214) project. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Colloid and Interface Science es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Benzimidazole es_ES
dc.subject Bifunctional solid catalyst es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Metal-organic frameworks es_ES
dc.subject Tandem reaction es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jcis.2019.10.093 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DST//EMR%2F2016%2F006500/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099482-A-I00/ES/DESCOMPOSICION FOTOCATALITICA DEL AGUA ASISTIDA POR LUZ VISIBLE EMPLEANDO MATERIALES NOVEDOSOS Y MULTIFUNCIONALES UIO-66%2F67/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F214/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Vallés-García, C.; Cabrero-Antonino, M.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; Dhakshinamoorthy, A.; García Gómez, H. (2020). Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles. Journal of Colloid and Interface Science. 560:885-893. https://doi.org/10.1016/j.jcis.2019.10.093 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jcis.2019.10.093 es_ES
dc.description.upvformatpinicio 885 es_ES
dc.description.upvformatpfin 893 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 560 es_ES
dc.identifier.pmid 31718791 es_ES
dc.relation.pasarela S\405839 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Fundación Ramón Areces es_ES
dc.contributor.funder University Grants Commission, India es_ES
dc.contributor.funder Department of Science and Technology, Ministry of Science and Technology, India es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275 es_ES
dc.description.references Bromberg, L., & Hatton, T. A. (2011). Aldehyde-Alcohol Reactions Catalyzed under Mild Conditions by Chromium(III) Terephthalate Metal Organic Framework (MIL-101) and Phosphotungstic Acid Composites. ACS Applied Materials & Interfaces, 3(12), 4756-4764. doi:10.1021/am201246d es_ES
dc.description.references Cirujano, F. G., Leyva-Pérez, A., Corma, A., & Llabrés i Xamena, F. X. (2013). MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem, 5(2), 538-549. doi:10.1002/cctc.201200878 es_ES
dc.description.references Kim, J., Kim, S.-N., Jang, H.-G., Seo, G., & Ahn, W.-S. (2013). CO2 cycloaddition of styrene oxide over MOF catalysts. Applied Catalysis A: General, 453, 175-180. doi:10.1016/j.apcata.2012.12.018 es_ES
dc.description.references Li, B., Leng, K., Zhang, Y., Dynes, J. J., Wang, J., Hu, Y., … Ma, S. (2015). Metal–Organic Framework Based upon the Synergy of a Brønsted Acid Framework and Lewis Acid Centers as a Highly Efficient Heterogeneous Catalyst for Fixed-Bed Reactions. Journal of the American Chemical Society, 137(12), 4243-4248. doi:10.1021/jacs.5b01352 es_ES
dc.description.references Mitchell, L., Gonzalez-Santiago, B., Mowat, J. P. S., Gunn, M. E., Williamson, P., Acerbi, N., … Wright, P. A. (2013). Remarkable Lewis acid catalytic performance of the scandium trimesate metal organic framework MIL-100(Sc) for C–C and CN bond-forming reactions. Catal. Sci. Technol., 3(3), 606-617. doi:10.1039/c2cy20577g es_ES
dc.description.references Bhattacharjee, S., Chen, C., & Ahn, W.-S. (2014). Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv., 4(94), 52500-52525. doi:10.1039/c4ra11259h es_ES
dc.description.references Niknam, E., Panahi, F., Daneshgar, F., Bahrami, F., & Khalafi-Nezhad, A. (2018). Metal–Organic Framework MIL-101(Cr) as an Efficient Heterogeneous Catalyst for Clean Synthesis of Benzoazoles. ACS Omega, 3(12), 17135-17144. doi:10.1021/acsomega.8b02309 es_ES
dc.description.references Darunte, L. A., Oetomo, A. D., Walton, K. S., Sholl, D. S., & Jones, C. W. (2016). Direct Air Capture of CO2 Using Amine Functionalized MIL-101(Cr). ACS Sustainable Chemistry & Engineering, 4(10), 5761-5768. doi:10.1021/acssuschemeng.6b01692 es_ES
dc.description.references Gao, L., Li, C.-Y. V., Yung, H., & Chan, K.-Y. (2013). A functionalized MIL-101(Cr) metal–organic framework for enhanced hydrogen release from ammonia borane at low temperature. Chemical Communications, 49(90), 10629. doi:10.1039/c3cc45719b es_ES
dc.description.references Hartmann, M., & Fischer, M. (2012). Amino-functionalized basic catalysts with MIL-101 structure. Microporous and Mesoporous Materials, 164, 38-43. doi:10.1016/j.micromeso.2012.06.044 es_ES
dc.description.references Ma, W., Xu, L., Li, Z., Sun, Y., Bai, Y., & Liu, H. (2016). Post-synthetic modification of an amino-functionalized metal–organic framework for highly efficient enrichment of N-linked glycopeptides. Nanoscale, 8(21), 10908-10912. doi:10.1039/c6nr02490d es_ES
dc.description.references Toyao, T., Fujiwaki, M., Horiuchi, Y., & Matsuoka, M. (2013). Application of an amino-functionalised metal–organic framework: an approach to a one-pot acid–base reaction. RSC Advances, 3(44), 21582. doi:10.1039/c3ra44701d es_ES
dc.description.references Yu, H., Xie, J., Zhong, Y., Zhang, F., & Zhu, W. (2012). One-pot synthesis of nitroalkenes via the Henry reaction over amino-functionalized MIL-101 catalysts. Catalysis Communications, 29, 101-104. doi:10.1016/j.catcom.2012.09.032 es_ES
dc.description.references Ma, L., Xu, L., Jiang, H., & Yuan, X. (2019). Comparative research on three types of MIL-101(Cr)-SO3H for esterification of cyclohexene with formic acid. RSC Advances, 9(10), 5692-5700. doi:10.1039/c8ra10366f es_ES
dc.description.references Saikia, M., & Saikia, L. (2016). Sulfonic acid-functionalized MIL-101(Cr) as a highly efficient heterogeneous catalyst for one-pot synthesis of 2-amino-4H-chromenes in aqueous medium. RSC Advances, 6(19), 15846-15853. doi:10.1039/c5ra28135k es_ES
dc.description.references Zhou, Y.-X., Chen, Y.-Z., Hu, Y., Huang, G., Yu, S.-H., & Jiang, H.-L. (2014). MIL-101-SO3H: A Highly Efficient Brønsted Acid Catalyst for Heterogeneous Alcoholysis of Epoxides under Ambient Conditions. Chemistry - A European Journal, 20(46), 14976-14980. doi:10.1002/chem.201404104 es_ES
dc.description.references Santiago-Portillo, A., Blandez, J. F., Navalón, S., Álvaro, M., & García, H. (2017). Influence of the organic linker substituent on the catalytic activity of MIL-101(Cr) for the oxidative coupling of benzylamines to imines. Catalysis Science & Technology, 7(6), 1351-1362. doi:10.1039/c6cy02577c es_ES
dc.description.references Herbst, A., Khutia, A., & Janiak, C. (2014). Brønsted Instead of Lewis Acidity in Functionalized MIL-101Cr MOFs for Efficient Heterogeneous (nano-MOF) Catalysis in the Condensation Reaction of Aldehydes with Alcohols. Inorganic Chemistry, 53(14), 7319-7333. doi:10.1021/ic5006456 es_ES
dc.description.references Kumar, A., Maurya, R. A., & Saxena, D. (2009). Diversity-oriented synthesis of benzimidazole, benzoxazole, benzothiazole and quinazolin-4(3H)-one libraries via potassium persulfate–CuSO4-mediated oxidative coupling reactions of aldehydes in aqueous micelles. Molecular Diversity, 14(2), 331-341. doi:10.1007/s11030-009-9170-8 es_ES
dc.description.references Reddy, L. A., Malakondaiah, G. C., Reddy, A. S., Bhaskar, B. V., Himabindu, V., Bhattacharya, A., & Bandichhor, R. (2009). Scalable Process for the Premix of Esomeprazole. Organic Process Research & Development, 13(6), 1122-1124. doi:10.1021/op9001406 es_ES
dc.description.references Zhang, Z.-H., Li, T.-S., & Li, J.-J. (2006). A Highly Effective Sulfamic Acid/Methanol Catalytic System for the Synthesis of Benzimidazole Derivatives at Room Temperature. Monatshefte für Chemie - Chemical Monthly, 138(1), 89-94. doi:10.1007/s00706-006-0566-1 es_ES
dc.description.references Singh, M. P., Sasmal, S., Lu, W., & Chatterjee, M. N. (2000). Synthetic Utility of Catalytic Fe(III)/Fe(II) Redox Cycling Towards Fused Heterocycles: A Facile Access to Substituted Benzimidazole, Bisbenzimidazole and Imidazopyridine Derivatives. Synthesis, 2000(10), 1380-1390. doi:10.1055/s-2000-7111 es_ES
dc.description.references Trivedi, R., De, S. K., & Gibbs, R. A. (2006). A convenient one-pot synthesis of 2-substituted benzimidazoles. Journal of Molecular Catalysis A: Chemical, 245(1-2), 8-11. doi:10.1016/j.molcata.2005.09.025 es_ES
dc.description.references Ohsawa, A., Nagata, K., Itoh, T., & Ishikawa, H. (2003). Synthesis of 2-Substituted Benzimidazoles by Reaction of o-Phenylenediamine with Aldehydes in the Presence of Sc(OTf)3. HETEROCYCLES, 61(1), 93. doi:10.3987/com-03-s47 es_ES
dc.description.references Wang, Y., Ma, H., Li, J., & Wang, J. (2007). Selective Synthesis of 2-Aryl-1-arylmethyl-1H-1,3-benzimidazoles Promoted by Ionic Liquid. HETEROCYCLES, 71(1), 135. doi:10.3987/com-06-10920 es_ES
dc.description.references Gogoi, P., & Konwar, D. (2006). An efficient and one-pot synthesis of imidazolines and benzimidazoles via anaerobic oxidation of carbon–nitrogen bonds in water. Tetrahedron Letters, 47(1), 79-82. doi:10.1016/j.tetlet.2005.10.134 es_ES
dc.description.references Kawashita, Y., Nakamichi, N., Kawabata, H., & Hayashi, M. (2003). Direct and Practical Synthesis of 2-Arylbenzoxazoles Promoted by Activated Carbon. Organic Letters, 5(20), 3713-3715. doi:10.1021/ol035393w es_ES
dc.description.references Dhakshinamoorthy, A., Kanagaraj, K., & Pitchumani, K. (2011). Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature. Tetrahedron Letters, 52(1), 69-73. doi:10.1016/j.tetlet.2010.10.146 es_ES
dc.description.references Madasamy, K., Kumaraguru, S., Sankar, V., Mannathan, S., & Kathiresan, M. (2019). A Zn based metal organic framework as a heterogeneous catalyst for C–C bond formation reactions. New Journal of Chemistry, 43(9), 3793-3800. doi:10.1039/c8nj05953e es_ES
dc.description.references Kaur, H., Venkateswarulu, M., Kumar, S., Krishnan, V., & Koner, R. R. (2018). A metal–organic framework based multifunctional catalytic platform for organic transformation and environmental remediation. Dalton Transactions, 47(5), 1488-1497. doi:10.1039/c7dt04057a es_ES
dc.description.references Homaee, M., Hamadi, H., Nobakht, V., Javaherian, M., & Salahshournia, B. (2019). Ultrasound-assisted synthesis of UiO-66-NHSO3H via post-synthetic modification as a heterogeneous Brønsted acid catalyst. Polyhedron, 165, 152-161. doi:10.1016/j.poly.2019.03.009 es_ES
dc.description.references Kardanpour, R., Tangestaninejad, S., Mirkhani, V., Moghadam, M., Mohammadpoor-Baltork, I., & Zadehahmadi, F. (2016). Anchoring of Cu(II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles. Journal of Solid State Chemistry, 235, 145-153. doi:10.1016/j.jssc.2015.11.019 es_ES
dc.description.references Canivet, J., Vandichel, M., & Farrusseng, D. (2016). Origin of highly active metal–organic framework catalysts: defects? Defects! Dalton Transactions, 45(10), 4090-4099. doi:10.1039/c5dt03522h es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2015). Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 44(7), 1922-1947. doi:10.1039/c4cs00254g es_ES
dc.description.references Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., … Zhou, H. (2018). Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1704303. doi:10.1002/adma.201704303 es_ES
dc.description.references Dhakshinamoorthy, A., & Garcia, H. (2014). Cascade Reactions Catalyzed by Metal Organic Frameworks. ChemSusChem, 7(9), 2392-2410. doi:10.1002/cssc.201402148 es_ES
dc.description.references Hu, M.-L., Safarifard, V., Doustkhah, E., Rostamnia, S., Morsali, A., Nouruzi, N., … Akhbari, K. (2018). Taking organic reactions over metal-organic frameworks as heterogeneous catalysis. Microporous and Mesoporous Materials, 256, 111-127. doi:10.1016/j.micromeso.2017.07.057 es_ES
dc.description.references Xu, C., Fang, R., Luque, R., Chen, L., & Li, Y. (2019). Functional metal–organic frameworks for catalytic applications. Coordination Chemistry Reviews, 388, 268-292. doi:10.1016/j.ccr.2019.03.005 es_ES
dc.description.references Azarifar, D., Ghorbani-Vaghei, R., Daliran, S., & Oveisi, A. R. (2017). A Multifunctional Zirconium-Based Metal-Organic Framework for the One-Pot Tandem Photooxidative Passerini Three-Component Reaction of Alcohols. ChemCatChem, 9(11), 1992-2000. doi:10.1002/cctc.201700169 es_ES
dc.description.references Ghaleno, M. R., Ghaffari-Moghaddam, M., Khajeh, M., Reza Oveisi, A., & Bohlooli, M. (2019). Iron species supported on a mesoporous zirconium metal-organic framework for visible light driven synthesis of quinazolin-4(3H)-ones through one-pot three-step tandem reaction. Journal of Colloid and Interface Science, 535, 214-226. doi:10.1016/j.jcis.2018.09.099 es_ES
dc.description.references Kirchon, A., Feng, L., Drake, H. F., Joseph, E. A., & Zhou, H.-C. (2018). From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chemical Society Reviews, 47(23), 8611-8638. doi:10.1039/c8cs00688a es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Framework Solids. ChemCatChem, 2(11), 1438-1443. doi:10.1002/cctc.201000175 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework. ACS Catalysis, 1(8), 836-840. doi:10.1021/cs200128t es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141 es_ES
dc.description.references Santiago-Portillo, A., Navalón, S., Álvaro, M., & García, H. (2018). Generating and optimizing the catalytic activity in UiO-66 for aerobic oxidation of alkenes by post-synthetic exchange Ti atoms combined with ligand substitution. Journal of Catalysis, 365, 450-463. doi:10.1016/j.jcat.2018.07.032 es_ES
dc.description.references Santiago-Portillo, A., Navalón, S., Cirujano, F. G., Xamena, F. X. L. i, Alvaro, M., & Garcia, H. (2015). MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 5(6), 3216-3224. doi:10.1021/acscatal.5b00411 es_ES
dc.description.references Santiago-Portillo, A., Navalón, S., Concepción, P., Álvaro, M., & García, H. (2017). Influence of Terephthalic Acid Substituents on the Catalytic Activity of MIL-101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 9(13), 2506-2511. doi:10.1002/cctc.201700236 es_ES
dc.description.references Lammert, M., Bernt, S., Vermoortele, F., De Vos, D. E., & Stock, N. (2013). Single- and Mixed-Linker Cr-MIL-101 Derivatives: A High-Throughput Investigation. Inorganic Chemistry, 52(15), 8521-8528. doi:10.1021/ic4005328 es_ES
dc.description.references Bernt, S., Guillerm, V., Serre, C., & Stock, N. (2011). Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chemical Communications, 47(10), 2838. doi:10.1039/c0cc04526h es_ES
dc.description.references Li, B., Zhang, Y., Ma, D., Li, L., Li, G., Li, G., … Feng, S. (2012). A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chemical Communications, 48(49), 6151. doi:10.1039/c2cc32384b es_ES
dc.description.references Kandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., … Lillerud, K. P. (2010). Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632-6640. doi:10.1021/cm102601v es_ES
dc.description.references Bansal, Y., & Silakari, O. (2012). The therapeutic journey of benzimidazoles: A review. Bioorganic & Medicinal Chemistry, 20(21), 6208-6236. doi:10.1016/j.bmc.2012.09.013 es_ES
dc.description.references Kumar, D., Kommi, D. N., Chebolu, R., Garg, S. K., Kumar, R., & Chakraborti, A. K. (2013). Selectivity control during the solid supported protic acids catalysed synthesis of 1,2-disubstituted benzimidazoles and mechanistic insight to rationalize selectivity. RSC Adv., 3(1), 91-98. doi:10.1039/c2ra21994h es_ES
dc.description.references Wang, R., Lu, X., Yu, X., Shi, L., & Sun, Y. (2007). Acid-catalyzed solvent-free synthesis of 2-arylbenzimidazoles under microwave irradiation. Journal of Molecular Catalysis A: Chemical, 266(1-2), 198-201. doi:10.1016/j.molcata.2006.04.071 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2015). Deactivation of Cu3(BTC)2 in the Synthesis of 2-Phenylquinoxaline. Catalysis Letters, 145(8), 1600-1605. doi:10.1007/s10562-015-1497-4 es_ES
dc.description.references Chen, J., Li, K., Chen, L., Liu, R., Huang, X., & Ye, D. (2014). Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chem., 16(5), 2490-2499. doi:10.1039/c3gc42414f es_ES
dc.description.references Herbst, A., & Janiak, C. (2017). MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm, 19(29), 4092-4117. doi:10.1039/c6ce01782g es_ES
dc.description.references Inamdar, S. M., More, V. K., & Mandal, S. K. (2013). CuO nano-particles supported on silica, a new catalyst for facile synthesis of benzimidazoles, benzothiazoles and benzoxazoles. Tetrahedron Letters, 54(6), 579-583. doi:10.1016/j.tetlet.2012.11.091 es_ES
dc.description.references Soleimani, E., Khodaei, M. M., Yazdani, H., Saei, P., & Zavar Reza, J. (2015). Synthesis of 2-substituted benzimidazoles and benzothiazoles using Ag2CO3/Celite as an efficient solid catalyst. Journal of the Iranian Chemical Society, 12(7), 1281-1285. doi:10.1007/s13738-015-0592-1 es_ES
dc.description.references Bardajee, G. R., Mohammadi, M., Yari, H., & Ghaedi, A. (2016). Simple and efficient protocol for the synthesis of benzoxazole, benzoimidazole and benzothiazole heterocycles using Fe(III)–Schiff base/SBA-15 as a nanocatalyst. Chinese Chemical Letters, 27(2), 265-270. doi:10.1016/j.cclet.2015.10.011 es_ES
dc.description.references Sharghi, H., Asemani, O., & Tabaei, S. M. H. (2008). Simple and mild procedures for synthesis of benzimidazole derivatives using heterogeneous catalyst systems. Journal of Heterocyclic Chemistry, 45(5), 1293-1298. doi:10.1002/jhet.5570450506 es_ES
dc.description.references Adharvana Chari, M., Shobha, D., & Sasaki, T. (2011). Room temperature synthesis of benzimidazole derivatives using reusable cobalt hydroxide (II) and cobalt oxide (II) as efficient solid catalysts. Tetrahedron Letters, 52(43), 5575-5580. doi:10.1016/j.tetlet.2011.08.047 es_ES
dc.description.references Teimouri, A., Chermahini, A. N., Salavati, H., & Ghorbanian, L. (2013). An efficient and one-pot synthesis of benzimidazoles, benzoxazoles, benzothiazoles and quinoxalines catalyzed via nano-solid acid catalysts. Journal of Molecular Catalysis A: Chemical, 373, 38-45. doi:10.1016/j.molcata.2013.02.030 es_ES
dc.description.references Azizian, J., Torabi, P., & Noei, J. (2016). Synthesis of benzimidazoles and benzoxazoles using TiCl3OTf in ethanol at room temperature. Tetrahedron Letters, 57(2), 185-188. doi:10.1016/j.tetlet.2015.11.092 es_ES
dc.description.references Digwal, C. S., Yadav, U., Sakla, A. P., Sri Ramya, P. V., Aaghaz, S., & Kamal, A. (2016). VOSO 4 catalyzed highly efficient synthesis of benzimidazoles, benzothiazoles, and quinoxalines. Tetrahedron Letters, 57(36), 4012-4016. doi:10.1016/j.tetlet.2016.06.074 es_ES
dc.description.references Vimont, A., Thibault-Starzyk, F., & Daturi, M. (2010). Analysing and understanding the active site by IR spectroscopy. Chemical Society Reviews, 39(12), 4928. doi:10.1039/b919543m es_ES
dc.description.references Leclerc, H., Vimont, A., Lavalley, J.-C., Daturi, M., Wiersum, A. D., Llwellyn, P. L., … Serre, C. (2011). Infrared study of the influence of reducible iron(iii) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal–organic framework MIL-100. Physical Chemistry Chemical Physics, 13(24), 11748. doi:10.1039/c1cp20502a es_ES
dc.description.references Vimont, A., Goupil, J.-M., Lavalley, J.-C., Daturi, M., Surblé, S., Serre, C., … Audebrand, N. (2006). Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate. Journal of the American Chemical Society, 128(10), 3218-3227. doi:10.1021/ja056906s es_ES
dc.description.references Volkringer, C., Leclerc, H., Lavalley, J.-C., Loiseau, T., Férey, G., Daturi, M., & Vimont, A. (2012). Infrared Spectroscopy Investigation of the Acid Sites in the Metal–Organic Framework Aluminum Trimesate MIL-100(Al). The Journal of Physical Chemistry C, 116(9), 5710-5719. doi:10.1021/jp210671t es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem