Mostrar el registro sencillo del ítem
dc.contributor.author | Rivero-Crespo, Miguel Ángel | es_ES |
dc.contributor.author | Tejeda-Serrano, Maria | es_ES |
dc.contributor.author | Perez-Sánchez, Horacio | es_ES |
dc.contributor.author | Cerón-Carrasco, José Pedro | es_ES |
dc.contributor.author | Leyva Perez, Antonio | es_ES |
dc.date.accessioned | 2021-04-17T03:32:45Z | |
dc.date.available | 2021-04-17T03:32:45Z | |
dc.date.issued | 2020-03-02 | es_ES |
dc.identifier.issn | 1433-7851 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165285 | |
dc.description | This is the peer reviewed version of the following article: M. Á. Rivero-Crespo, M. Tejeda-Serrano, H. Pérez-Sánchez, J. P. Cerón-Carrasco, A. Leyva-Pérez, Angew. Chem. Int. Ed. 2020, 59, 3846, which has been published in final form at https://doi.org/10.1002/anie.201909597. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] The carbonyl-olefin metathesis reaction has experienced significant advances in the last seven years with new catalysts and reaction protocols. However, most of these procedures involve soluble catalysts for intramolecular reactions in batch. Herein, we show that recoverable, inexpensive, easy to handle, non-toxic, and widely available simple solid acids, such as the aluminosilicate montmorillonite, can catalyze the intermolecular carbonyl-olefin metathesis of aromatic ketones and aldehydes with vinyl ethers in-flow, to give alkenes with complete trans stereoselectivity on multi-gram scale and high yields. Experimental and computational data support a mechanism based on a carbocation-induced Grob fragmentation. These results open the way for the industrial implementation of carbonyl-olefin metathesis over solid catalysts in continuous mode, which is still the origin and main application of the parent alkene-alkene cross-metathesis. | es_ES |
dc.description.sponsorship | Financial support by MINECO through the Severo Ochoa program (SEV-2016-0683), Excellence program (CTQ 2017-86735-P, CTQ 2017-87974-R), Retos Col. (RTC-2017-6331-5), and "Convocatoria 2014 de Ayudas Fundacion BBVA a Investigadores y Creadores Culturales" is acknowledged. M.A.R.-C. and M.T.-S. thank ITQ for the concession of a contract. This research was partially supported by the supercomputing infrastructure of Poznan Supercomputing Center. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Angewandte Chemie International Edition | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Carbonyl-olefin metathesis | es_ES |
dc.subject | Heterogeneous catalysis | es_ES |
dc.subject | In-flow reactions | es_ES |
dc.subject | Montmorillonite K10 | es_ES |
dc.subject | Vinyl ethers | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Intermolecular Carbonyl-olefin Metathesis with Vinyl Ethers Catalyzed by Homogeneous and Solid Acids in Flow | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/anie.201909597 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-86735-P/ES/CATALISIS CON ATOMOS METALICOS AISLADOS Y CLUSTERES ULTRAPEQUEÑOS BIEN DEFINIDOS, SIN LIGANDOS Y CONFINADOS./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RTC-2017-6331-5/ES/NUEVA SINTESIS DEL OLIGOMERO CLAVE EN TINTAS DIGITALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87974-R/ES/DESARROLLO DE TECNICAS AVANZADAS DE DESCUBRIMIENTO DE FARMACOS, SU IMPLEMENTACION EN HERRAMIENTAS SOFTWARE Y WEB, Y SU APLICACION A CONTEXTOS DE RELEVANCIA FARMACOLOGICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Rivero-Crespo, MÁ.; Tejeda-Serrano, M.; Perez-Sánchez, H.; Cerón-Carrasco, JP.; Leyva Perez, A. (2020). Intermolecular Carbonyl-olefin Metathesis with Vinyl Ethers Catalyzed by Homogeneous and Solid Acids in Flow. Angewandte Chemie International Edition. 59(10):3846-3849. https://doi.org/10.1002/anie.201909597 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/anie.201909597 | es_ES |
dc.description.upvformatpinicio | 3846 | es_ES |
dc.description.upvformatpfin | 3849 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 59 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.pmid | 31538394 | es_ES |
dc.relation.pasarela | S\404698 | es_ES |
dc.contributor.funder | Fundación BBVA | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Becker, M. R., Watson, R. B., & Schindler, C. S. (2018). Beyond olefins: new metathesis directions for synthesis. Chemical Society Reviews, 47(21), 7867-7881. doi:10.1039/c8cs00391b | es_ES |
dc.description.references | Griffith, A. K., Vanos, C. M., & Lambert, T. H. (2012). Organocatalytic Carbonyl-Olefin Metathesis. Journal of the American Chemical Society, 134(45), 18581-18584. doi:10.1021/ja309650u | es_ES |
dc.description.references | Ludwig, J. R., Zimmerman, P. M., Gianino, J. B., & Schindler, C. S. (2016). Iron(III)-catalysed carbonyl–olefin metathesis. Nature, 533(7603), 374-379. doi:10.1038/nature17432 | es_ES |
dc.description.references | Ludwig, J. R., Phan, S., McAtee, C. C., Zimmerman, P. M., Devery, J. J., & Schindler, C. S. (2017). Mechanistic Investigations of the Iron(III)-Catalyzed Carbonyl-Olefin Metathesis Reaction. Journal of the American Chemical Society, 139(31), 10832-10842. doi:10.1021/jacs.7b05641 | es_ES |
dc.description.references | For reviews on carbonyl olefin metathesis see: | es_ES |
dc.description.references | Schindler, C., & Ludwig, J. (2017). Lewis Acid Catalyzed Carbonyl–Olefin Metathesis. Synlett, 28(13), 1501-1509. doi:10.1055/s-0036-1588827 | es_ES |
dc.description.references | T. H. Lambert Synlett2019 ahead of print. | es_ES |
dc.description.references | For examples of solid-catalyzed low-temperature alkene metathesis see: | es_ES |
dc.description.references | Mougel, V., Chan, K.-W., Siddiqi, G., Kawakita, K., Nagae, H., Tsurugi, H., … Copéret, C. (2016). Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents. ACS Central Science, 2(8), 569-576. doi:10.1021/acscentsci.6b00176 | es_ES |
dc.description.references | Korzyński, M. D., Consoli, D. F., Zhang, S., Román-Leshkov, Y., & Dincă, M. (2018). Activation of Methyltrioxorhenium for Olefin Metathesis in a Zirconium-Based Metal–Organic Framework. Journal of the American Chemical Society, 140(22), 6956-6960. doi:10.1021/jacs.8b02837 | es_ES |
dc.description.references | Van Schaik, H.-P., Vijn, R.-J., & Bickelhaupt, F. (1994). Acid-Catalyzed Olefination of Benzaldehyde. Angewandte Chemie International Edition in English, 33(1516), 1611-1612. doi:10.1002/anie.199416111 | es_ES |
dc.description.references | Van Schaik, H.-P., Vijn, R.-J., & Bickelhaupt, F. (1994). Säurekatalysierte Olefinierung von Benzaldehyd. Angewandte Chemie, 106(15-16), 1703-1704. doi:10.1002/ange.19941061529 | es_ES |
dc.description.references | For pure Bronsted acid-catalyzed reactions see: | es_ES |
dc.description.references | Ludwig, J. R., Watson, R. B., Nasrallah, D. J., Gianino, J. B., Zimmerman, P. M., Wiscons, R. A., & Schindler, C. S. (2018). Interrupted carbonyl-olefin metathesis via oxygen atom transfer. Science, 361(6409), 1363-1369. doi:10.1126/science.aar8238 | es_ES |
dc.description.references | Catti, L., & Tiefenbacher, K. (2018). Brønsted Acid-Catalyzed Carbonyl-Olefin Metathesis inside a Self-Assembled Supramolecular Host. Angewandte Chemie International Edition, 57(44), 14589-14592. doi:10.1002/anie.201712141 | es_ES |
dc.description.references | Catti, L., & Tiefenbacher, K. (2018). Brønsted-Säure-katalysierte Carbonyl-Olefin-Metathese in einer selbstorganisierten supramolekularen Wirtstruktur. Angewandte Chemie, 130(44), 14797-14800. doi:10.1002/ange.201712141 | es_ES |
dc.description.references | For intermolecular reactions see: | es_ES |
dc.description.references | Ni, S., & Franzén, J. (2018). Carbocation catalysed ring closing aldehyde–olefin metathesis. Chemical Communications, 54(92), 12982-12985. doi:10.1039/c8cc06734a | es_ES |
dc.description.references | Pitzer, L., Sandfort, F., Strieth‐Kalthoff, F., & Glorius, F. (2018). Carbonyl–Olefin Cross‐Metathesis Through a Visible‐Light‐Induced 1,3‐Diol Formation and Fragmentation Sequence. Angewandte Chemie International Edition, 57(49), 16219-16223. doi:10.1002/anie.201810221 | es_ES |
dc.description.references | Pitzer, L., Sandfort, F., Strieth‐Kalthoff, F., & Glorius, F. (2018). Carbonyl‐Olefin‐Kreuzmetathese mittels Licht‐induzierter 1,3‐Diol‐Bildung‐ und Fragmentierungssequenz. Angewandte Chemie, 130(49), 16453-16457. doi:10.1002/ange.201810221 | es_ES |
dc.description.references | Tran, U. P. N., Oss, G., Pace, D. P., Ho, J., & Nguyen, T. V. (2018). Tropylium-promoted carbonyl–olefin metathesis reactions. Chemical Science, 9(23), 5145-5151. doi:10.1039/c8sc00907d | es_ES |
dc.description.references | Tran, U. P. N., Oss, G., Breugst, M., Detmar, E., Pace, D. P., Liyanto, K., & Nguyen, T. V. (2018). Carbonyl–Olefin Metathesis Catalyzed by Molecular Iodine. ACS Catalysis, 9(2), 912-919. doi:10.1021/acscatal.8b03769 | es_ES |
dc.description.references | Lewis, J. D., Van de Vyver, S., & Román‐Leshkov, Y. (2015). Acid–Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization. Angewandte Chemie International Edition, 54(34), 9835-9838. doi:10.1002/anie.201502939 | es_ES |
dc.description.references | Lewis, J. D., Van de Vyver, S., & Román‐Leshkov, Y. (2015). Acid–Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization. Angewandte Chemie, 127(34), 9973-9976. doi:10.1002/ange.201502939 | es_ES |
dc.description.references | Fortea-Pérez, F. R., Mon, M., Ferrando-Soria, J., Boronat, M., Leyva-Pérez, A., Corma, A., … Pardo, E. (2017). The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nature Materials, 16(7), 760-766. doi:10.1038/nmat4910 | es_ES |
dc.description.references | Oliver-Meseguer, J., Boronat, M., Vidal-Moya, A., Concepción, P., Rivero-Crespo, M. Á., Leyva-Pérez, A., & Corma, A. (2018). Generation and Reactivity of Electron-Rich Carbenes on the Surface of Catalytic Gold Nanoparticles. Journal of the American Chemical Society, 140(9), 3215-3218. doi:10.1021/jacs.7b13696 | es_ES |
dc.description.references | Rivero‐Crespo, M. A., Mon, M., Ferrando‐Soria, J., Lopes, C. W., Boronat, M., Leyva‐Pérez, A., … Pardo, E. (2018). Confined Pt 1 1+ Water Clusters in a MOF Catalyze the Low‐Temperature Water–Gas Shift Reaction with both CO 2 Oxygen Atoms Coming from Water. Angewandte Chemie International Edition, 57(52), 17094-17099. doi:10.1002/anie.201810251 | es_ES |
dc.description.references | Rivero‐Crespo, M. A., Mon, M., Ferrando‐Soria, J., Lopes, C. W., Boronat, M., Leyva‐Pérez, A., … Pardo, E. (2018). Confined Pt 1 1+ Water Clusters in a MOF Catalyze the Low‐Temperature Water–Gas Shift Reaction with both CO 2 Oxygen Atoms Coming from Water. Angewandte Chemie, 130(52), 17340-17345. doi:10.1002/ange.201810251 | es_ES |
dc.description.references | Tejeda-Serrano, M., Mon, M., Ross, B., Gonell, F., Ferrando-Soria, J., Corma, A., … Pardo, E. (2018). Isolated Fe(III)–O Sites Catalyze the Hydrogenation of Acetylene in Ethylene Flows under Front-End Industrial Conditions. Journal of the American Chemical Society, 140(28), 8827-8832. doi:10.1021/jacs.8b04669 | es_ES |
dc.description.references | Ma, L., Li, W., Xi, H., Bai, X., Ma, E., Yan, X., & Li, Z. (2016). FeCl3 -Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. Angewandte Chemie International Edition, 55(35), 10410-10413. doi:10.1002/anie.201604349 | es_ES |
dc.description.references | Ma, L., Li, W., Xi, H., Bai, X., Ma, E., Yan, X., & Li, Z. (2016). FeCl3 -Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. Angewandte Chemie, 128(35), 10566-10569. doi:10.1002/ange.201604349 | es_ES |
dc.description.references | McAtee, C. C., Riehl, P. S., & Schindler, C. S. (2017). Polycyclic Aromatic Hydrocarbons via Iron(III)-Catalyzed Carbonyl–Olefin Metathesis. Journal of the American Chemical Society, 139(8), 2960-2963. doi:10.1021/jacs.7b01114 | es_ES |
dc.description.references | Niyomchon, S., Oppedisano, A., Aillard, P., & Maulide, N. (2017). A three-membered ring approach to carbonyl olefination. Nature Communications, 8(1). doi:10.1038/s41467-017-01036-y | es_ES |
dc.description.references | Watson, R. B., & Schindler, C. S. (2017). Iron-Catalyzed Synthesis of Tetrahydronaphthalenes via 3,4-Dihydro-2H-pyran Intermediates. Organic Letters, 20(1), 68-71. doi:10.1021/acs.orglett.7b03367 | es_ES |
dc.description.references | Groso, E. J., Golonka, A. N., Harding, R. A., Alexander, B. W., Sodano, T. M., & Schindler, C. S. (2018). 3-Aryl-2,5-Dihydropyrroles via Catalytic Carbonyl-Olefin Metathesis. ACS Catalysis, 8(3), 2006-2011. doi:10.1021/acscatal.7b03769 | es_ES |
dc.description.references | Albright, H., Riehl, P. S., McAtee, C. C., Reid, J. P., Ludwig, J. R., Karp, L. A., … Schindler, C. S. (2018). Catalytic Carbonyl-Olefin Metathesis of Aliphatic Ketones: Iron(III) Homo-Dimers as Lewis Acidic Superelectrophiles. Journal of the American Chemical Society, 141(4), 1690-1700. doi:10.1021/jacs.8b11840 | es_ES |
dc.description.references | Śliwa, M., Samson, K., Ruggiero–Mikołajczyk, M., Żelazny, A., & Grabowski, R. (2014). Influence of Montmorillonite K10 Modification with Tungstophosphoric Acid on Hybrid Catalyst Activity in Direct Dimethyl Ether Synthesis from Syngas. Catalysis Letters, 144(11), 1884-1893. doi:10.1007/s10562-014-1359-5 | es_ES |
dc.description.references | Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2015). Beyond Acid Strength in Zeolites: Soft Framework Counteranions for Stabilization of Carbocations on Zeolites and Its Implication in Organic Synthesis. Angewandte Chemie International Edition, 54(19), 5658-5661. doi:10.1002/anie.201500864 | es_ES |
dc.description.references | Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2015). Beyond Acid Strength in Zeolites: Soft Framework Counteranions for Stabilization of Carbocations on Zeolites and Its Implication in Organic Synthesis. Angewandte Chemie, 127(19), 5750-5753. doi:10.1002/ange.201500864 | es_ES |
dc.description.references | Gassman, P. G., & Burns, S. J. (1988). General method for the synthesis of enol ethers (vinyl ethers) from acetals. The Journal of Organic Chemistry, 53(23), 5574-5576. doi:10.1021/jo00258a043 | es_ES |
dc.description.references | Yamamoto, T., Eki, T., Nagumo, S., Suemune, H., & Sakai, K. (1992). Drastic ring transformation reactions of fused bicyclic rings to bridged bicyclic rings. Tetrahedron, 48(22), 4517-4524. doi:10.1016/s0040-4020(01)81224-2 | es_ES |
dc.description.references | Nagumo, S., Matsukuma, A., Suemune, H., & Sakai, K. (1993). Novel ring cleavage based on intermolecular aldol condensation. Tetrahedron, 49(46), 10501-10510. doi:10.1016/s0040-4020(01)81545-3 | es_ES |
dc.description.references | Suemune, H., Yoshida, O., Uchida, J., Nomura, Y., Tanaka, M., & Sakai, K. (1995). Asymmetric ring cleavage reaction based on crossed aldol condensation. Tetrahedron Letters, 36(40), 7259-7262. doi:10.1016/0040-4039(95)01504-b | es_ES |
dc.description.references | Kumar, B. S., Dhakshinamoorthy, A., & Pitchumani, K. (2014). K10 montmorillonite clays as environmentally benign catalysts for organic reactions. Catal. Sci. Technol., 4(8), 2378-2396. doi:10.1039/c4cy00112e | es_ES |
dc.description.references | Pérez-Ruiz, R., Miranda, M. A., Alle, R., Meerholz, K., & Griesbeck, A. G. (2006). An efficient carbonyl-alkene metathesis of bicyclic oxetanes: photoinduced electron transfer reduction of the Paternò–Büchi adducts from 2,3-dihydrofuran and aromatic aldehydes. Photochem. Photobiol. Sci., 5(1), 51-55. doi:10.1039/b513875b | es_ES |
dc.description.references | D’Auria, M., & Racioppi, R. (2013). Oxetane Synthesis through the Paternò-Büchi Reaction. Molecules, 18(9), 11384-11428. doi:10.3390/molecules180911384 | es_ES |
dc.description.references | Mete, T. B., Khopade, T. M., & Bhat, R. G. (2017). Oxidative decarboxylation of arylacetic acids in water: One-pot transition-metal-free synthesis of aldehydes and ketones. Tetrahedron Letters, 58(29), 2822-2825. doi:10.1016/j.tetlet.2017.06.013 | es_ES |
dc.description.references | Corma, A., Ruiz, V. R., Leyva-Pérez, A., & Sabater, M. J. (2010). Regio- and Stereoselective Intermolecular Hydroalkoxylation of Alkynes Catalysed by Cationic Gold(I) Complexes. Advanced Synthesis & Catalysis, 352(10), 1701-1710. doi:10.1002/adsc.201000094 | es_ES |
dc.description.references | Prantz, K., & Mulzer, J. (2010). Synthetic Applications of the Carbonyl Generating Grob Fragmentation. Chemical Reviews, 110(6), 3741-3766. doi:10.1021/cr900386h | es_ES |
dc.description.references | Gong, Y. D., Tanaka, H., Iwasawa, N., & Narasaka, K. (1998). Lewis Acid-Promoted Disproportionation Reaction of Aromatic Vinyl Ethers and Acetals and Its Application to the Synthesis of Paracotoin. Bulletin of the Chemical Society of Japan, 71(9), 2181-2185. doi:10.1246/bcsj.71.2181 | es_ES |
dc.description.references | Zhao, Y., & Truhlar, D. G. (2008). Density Functionals with Broad Applicability in Chemistry. Accounts of Chemical Research, 41(2), 157-167. doi:10.1021/ar700111a | es_ES |
dc.description.references | Copéret, C., Allouche, F., Chan, K. W., Conley, M. P., Delley, M. F., Fedorov, A., … Zhizhko, P. A. (2018). Bridging the Gap between Industrial and Well‐Defined Supported Catalysts. Angewandte Chemie International Edition, 57(22), 6398-6440. doi:10.1002/anie.201702387 | es_ES |
dc.description.references | Copéret, C., Allouche, F., Chan, K. W., Conley, M. P., Delley, M. F., Fedorov, A., … Zhizhko, P. A. (2018). Eine Brücke zwischen industriellen und wohldefinierten Trägerkatalysatoren. Angewandte Chemie, 130(22), 6506-6551. doi:10.1002/ange.201702387 | es_ES |