Becker, M. R., Watson, R. B., & Schindler, C. S. (2018). Beyond olefins: new metathesis directions for synthesis. Chemical Society Reviews, 47(21), 7867-7881. doi:10.1039/c8cs00391b
Griffith, A. K., Vanos, C. M., & Lambert, T. H. (2012). Organocatalytic Carbonyl-Olefin Metathesis. Journal of the American Chemical Society, 134(45), 18581-18584. doi:10.1021/ja309650u
Ludwig, J. R., Zimmerman, P. M., Gianino, J. B., & Schindler, C. S. (2016). Iron(III)-catalysed carbonyl–olefin metathesis. Nature, 533(7603), 374-379. doi:10.1038/nature17432
[+]
Becker, M. R., Watson, R. B., & Schindler, C. S. (2018). Beyond olefins: new metathesis directions for synthesis. Chemical Society Reviews, 47(21), 7867-7881. doi:10.1039/c8cs00391b
Griffith, A. K., Vanos, C. M., & Lambert, T. H. (2012). Organocatalytic Carbonyl-Olefin Metathesis. Journal of the American Chemical Society, 134(45), 18581-18584. doi:10.1021/ja309650u
Ludwig, J. R., Zimmerman, P. M., Gianino, J. B., & Schindler, C. S. (2016). Iron(III)-catalysed carbonyl–olefin metathesis. Nature, 533(7603), 374-379. doi:10.1038/nature17432
Ludwig, J. R., Phan, S., McAtee, C. C., Zimmerman, P. M., Devery, J. J., & Schindler, C. S. (2017). Mechanistic Investigations of the Iron(III)-Catalyzed Carbonyl-Olefin Metathesis Reaction. Journal of the American Chemical Society, 139(31), 10832-10842. doi:10.1021/jacs.7b05641
For reviews on carbonyl olefin metathesis see:
Schindler, C., & Ludwig, J. (2017). Lewis Acid Catalyzed Carbonyl–Olefin Metathesis. Synlett, 28(13), 1501-1509. doi:10.1055/s-0036-1588827
T. H. Lambert Synlett2019 ahead of print.
For examples of solid-catalyzed low-temperature alkene metathesis see:
Mougel, V., Chan, K.-W., Siddiqi, G., Kawakita, K., Nagae, H., Tsurugi, H., … Copéret, C. (2016). Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents. ACS Central Science, 2(8), 569-576. doi:10.1021/acscentsci.6b00176
Korzyński, M. D., Consoli, D. F., Zhang, S., Román-Leshkov, Y., & Dincă, M. (2018). Activation of Methyltrioxorhenium for Olefin Metathesis in a Zirconium-Based Metal–Organic Framework. Journal of the American Chemical Society, 140(22), 6956-6960. doi:10.1021/jacs.8b02837
Van Schaik, H.-P., Vijn, R.-J., & Bickelhaupt, F. (1994). Acid-Catalyzed Olefination of Benzaldehyde. Angewandte Chemie International Edition in English, 33(1516), 1611-1612. doi:10.1002/anie.199416111
Van Schaik, H.-P., Vijn, R.-J., & Bickelhaupt, F. (1994). Säurekatalysierte Olefinierung von Benzaldehyd. Angewandte Chemie, 106(15-16), 1703-1704. doi:10.1002/ange.19941061529
For pure Bronsted acid-catalyzed reactions see:
Ludwig, J. R., Watson, R. B., Nasrallah, D. J., Gianino, J. B., Zimmerman, P. M., Wiscons, R. A., & Schindler, C. S. (2018). Interrupted carbonyl-olefin metathesis via oxygen atom transfer. Science, 361(6409), 1363-1369. doi:10.1126/science.aar8238
Catti, L., & Tiefenbacher, K. (2018). Brønsted Acid-Catalyzed Carbonyl-Olefin Metathesis inside a Self-Assembled Supramolecular Host. Angewandte Chemie International Edition, 57(44), 14589-14592. doi:10.1002/anie.201712141
Catti, L., & Tiefenbacher, K. (2018). Brønsted-Säure-katalysierte Carbonyl-Olefin-Metathese in einer selbstorganisierten supramolekularen Wirtstruktur. Angewandte Chemie, 130(44), 14797-14800. doi:10.1002/ange.201712141
For intermolecular reactions see:
Ni, S., & Franzén, J. (2018). Carbocation catalysed ring closing aldehyde–olefin metathesis. Chemical Communications, 54(92), 12982-12985. doi:10.1039/c8cc06734a
Pitzer, L., Sandfort, F., Strieth‐Kalthoff, F., & Glorius, F. (2018). Carbonyl–Olefin Cross‐Metathesis Through a Visible‐Light‐Induced 1,3‐Diol Formation and Fragmentation Sequence. Angewandte Chemie International Edition, 57(49), 16219-16223. doi:10.1002/anie.201810221
Pitzer, L., Sandfort, F., Strieth‐Kalthoff, F., & Glorius, F. (2018). Carbonyl‐Olefin‐Kreuzmetathese mittels Licht‐induzierter 1,3‐Diol‐Bildung‐ und Fragmentierungssequenz. Angewandte Chemie, 130(49), 16453-16457. doi:10.1002/ange.201810221
Tran, U. P. N., Oss, G., Pace, D. P., Ho, J., & Nguyen, T. V. (2018). Tropylium-promoted carbonyl–olefin metathesis reactions. Chemical Science, 9(23), 5145-5151. doi:10.1039/c8sc00907d
Tran, U. P. N., Oss, G., Breugst, M., Detmar, E., Pace, D. P., Liyanto, K., & Nguyen, T. V. (2018). Carbonyl–Olefin Metathesis Catalyzed by Molecular Iodine. ACS Catalysis, 9(2), 912-919. doi:10.1021/acscatal.8b03769
Lewis, J. D., Van de Vyver, S., & Román‐Leshkov, Y. (2015). Acid–Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization. Angewandte Chemie International Edition, 54(34), 9835-9838. doi:10.1002/anie.201502939
Lewis, J. D., Van de Vyver, S., & Román‐Leshkov, Y. (2015). Acid–Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization. Angewandte Chemie, 127(34), 9973-9976. doi:10.1002/ange.201502939
Fortea-Pérez, F. R., Mon, M., Ferrando-Soria, J., Boronat, M., Leyva-Pérez, A., Corma, A., … Pardo, E. (2017). The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nature Materials, 16(7), 760-766. doi:10.1038/nmat4910
Oliver-Meseguer, J., Boronat, M., Vidal-Moya, A., Concepción, P., Rivero-Crespo, M. Á., Leyva-Pérez, A., & Corma, A. (2018). Generation and Reactivity of Electron-Rich Carbenes on the Surface of Catalytic Gold Nanoparticles. Journal of the American Chemical Society, 140(9), 3215-3218. doi:10.1021/jacs.7b13696
Rivero‐Crespo, M. A., Mon, M., Ferrando‐Soria, J., Lopes, C. W., Boronat, M., Leyva‐Pérez, A., … Pardo, E. (2018). Confined Pt
1
1+
Water Clusters in a MOF Catalyze the Low‐Temperature Water–Gas Shift Reaction with both CO
2
Oxygen Atoms Coming from Water. Angewandte Chemie International Edition, 57(52), 17094-17099. doi:10.1002/anie.201810251
Rivero‐Crespo, M. A., Mon, M., Ferrando‐Soria, J., Lopes, C. W., Boronat, M., Leyva‐Pérez, A., … Pardo, E. (2018). Confined Pt
1
1+
Water Clusters in a MOF Catalyze the Low‐Temperature Water–Gas Shift Reaction with both CO
2
Oxygen Atoms Coming from Water. Angewandte Chemie, 130(52), 17340-17345. doi:10.1002/ange.201810251
Tejeda-Serrano, M., Mon, M., Ross, B., Gonell, F., Ferrando-Soria, J., Corma, A., … Pardo, E. (2018). Isolated Fe(III)–O Sites Catalyze the Hydrogenation of Acetylene in Ethylene Flows under Front-End Industrial Conditions. Journal of the American Chemical Society, 140(28), 8827-8832. doi:10.1021/jacs.8b04669
Ma, L., Li, W., Xi, H., Bai, X., Ma, E., Yan, X., & Li, Z. (2016). FeCl3
-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. Angewandte Chemie International Edition, 55(35), 10410-10413. doi:10.1002/anie.201604349
Ma, L., Li, W., Xi, H., Bai, X., Ma, E., Yan, X., & Li, Z. (2016). FeCl3
-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. Angewandte Chemie, 128(35), 10566-10569. doi:10.1002/ange.201604349
McAtee, C. C., Riehl, P. S., & Schindler, C. S. (2017). Polycyclic Aromatic Hydrocarbons via Iron(III)-Catalyzed Carbonyl–Olefin Metathesis. Journal of the American Chemical Society, 139(8), 2960-2963. doi:10.1021/jacs.7b01114
Niyomchon, S., Oppedisano, A., Aillard, P., & Maulide, N. (2017). A three-membered ring approach to carbonyl olefination. Nature Communications, 8(1). doi:10.1038/s41467-017-01036-y
Watson, R. B., & Schindler, C. S. (2017). Iron-Catalyzed Synthesis of Tetrahydronaphthalenes via 3,4-Dihydro-2H-pyran Intermediates. Organic Letters, 20(1), 68-71. doi:10.1021/acs.orglett.7b03367
Groso, E. J., Golonka, A. N., Harding, R. A., Alexander, B. W., Sodano, T. M., & Schindler, C. S. (2018). 3-Aryl-2,5-Dihydropyrroles via Catalytic Carbonyl-Olefin Metathesis. ACS Catalysis, 8(3), 2006-2011. doi:10.1021/acscatal.7b03769
Albright, H., Riehl, P. S., McAtee, C. C., Reid, J. P., Ludwig, J. R., Karp, L. A., … Schindler, C. S. (2018). Catalytic Carbonyl-Olefin Metathesis of Aliphatic Ketones: Iron(III) Homo-Dimers as Lewis Acidic Superelectrophiles. Journal of the American Chemical Society, 141(4), 1690-1700. doi:10.1021/jacs.8b11840
Śliwa, M., Samson, K., Ruggiero–Mikołajczyk, M., Żelazny, A., & Grabowski, R. (2014). Influence of Montmorillonite K10 Modification with Tungstophosphoric Acid on Hybrid Catalyst Activity in Direct Dimethyl Ether Synthesis from Syngas. Catalysis Letters, 144(11), 1884-1893. doi:10.1007/s10562-014-1359-5
Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2015). Beyond Acid Strength in Zeolites: Soft Framework Counteranions for Stabilization of Carbocations on Zeolites and Its Implication in Organic Synthesis. Angewandte Chemie International Edition, 54(19), 5658-5661. doi:10.1002/anie.201500864
Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2015). Beyond Acid Strength in Zeolites: Soft Framework Counteranions for Stabilization of Carbocations on Zeolites and Its Implication in Organic Synthesis. Angewandte Chemie, 127(19), 5750-5753. doi:10.1002/ange.201500864
Gassman, P. G., & Burns, S. J. (1988). General method for the synthesis of enol ethers (vinyl ethers) from acetals. The Journal of Organic Chemistry, 53(23), 5574-5576. doi:10.1021/jo00258a043
Yamamoto, T., Eki, T., Nagumo, S., Suemune, H., & Sakai, K. (1992). Drastic ring transformation reactions of fused bicyclic rings to bridged bicyclic rings. Tetrahedron, 48(22), 4517-4524. doi:10.1016/s0040-4020(01)81224-2
Nagumo, S., Matsukuma, A., Suemune, H., & Sakai, K. (1993). Novel ring cleavage based on intermolecular aldol condensation. Tetrahedron, 49(46), 10501-10510. doi:10.1016/s0040-4020(01)81545-3
Suemune, H., Yoshida, O., Uchida, J., Nomura, Y., Tanaka, M., & Sakai, K. (1995). Asymmetric ring cleavage reaction based on crossed aldol condensation. Tetrahedron Letters, 36(40), 7259-7262. doi:10.1016/0040-4039(95)01504-b
Kumar, B. S., Dhakshinamoorthy, A., & Pitchumani, K. (2014). K10 montmorillonite clays as environmentally benign catalysts for organic reactions. Catal. Sci. Technol., 4(8), 2378-2396. doi:10.1039/c4cy00112e
Pérez-Ruiz, R., Miranda, M. A., Alle, R., Meerholz, K., & Griesbeck, A. G. (2006). An efficient carbonyl-alkene metathesis of bicyclic oxetanes: photoinduced electron transfer reduction of the Paternò–Büchi adducts from 2,3-dihydrofuran and aromatic aldehydes. Photochem. Photobiol. Sci., 5(1), 51-55. doi:10.1039/b513875b
D’Auria, M., & Racioppi, R. (2013). Oxetane Synthesis through the Paternò-Büchi Reaction. Molecules, 18(9), 11384-11428. doi:10.3390/molecules180911384
Mete, T. B., Khopade, T. M., & Bhat, R. G. (2017). Oxidative decarboxylation of arylacetic acids in water: One-pot transition-metal-free synthesis of aldehydes and ketones. Tetrahedron Letters, 58(29), 2822-2825. doi:10.1016/j.tetlet.2017.06.013
Corma, A., Ruiz, V. R., Leyva-Pérez, A., & Sabater, M. J. (2010). Regio- and Stereoselective Intermolecular Hydroalkoxylation of Alkynes Catalysed by Cationic Gold(I) Complexes. Advanced Synthesis & Catalysis, 352(10), 1701-1710. doi:10.1002/adsc.201000094
Prantz, K., & Mulzer, J. (2010). Synthetic Applications of the Carbonyl Generating Grob Fragmentation. Chemical Reviews, 110(6), 3741-3766. doi:10.1021/cr900386h
Gong, Y. D., Tanaka, H., Iwasawa, N., & Narasaka, K. (1998). Lewis Acid-Promoted Disproportionation Reaction of Aromatic Vinyl Ethers and Acetals and Its Application to the Synthesis of Paracotoin. Bulletin of the Chemical Society of Japan, 71(9), 2181-2185. doi:10.1246/bcsj.71.2181
Zhao, Y., & Truhlar, D. G. (2008). Density Functionals with Broad Applicability in Chemistry. Accounts of Chemical Research, 41(2), 157-167. doi:10.1021/ar700111a
Copéret, C., Allouche, F., Chan, K. W., Conley, M. P., Delley, M. F., Fedorov, A., … Zhizhko, P. A. (2018). Bridging the Gap between Industrial and Well‐Defined Supported Catalysts. Angewandte Chemie International Edition, 57(22), 6398-6440. doi:10.1002/anie.201702387
Copéret, C., Allouche, F., Chan, K. W., Conley, M. P., Delley, M. F., Fedorov, A., … Zhizhko, P. A. (2018). Eine Brücke zwischen industriellen und wohldefinierten Trägerkatalysatoren. Angewandte Chemie, 130(22), 6506-6551. doi:10.1002/ange.201702387
[-]