- -

Fruit-dependent epigenetic regulation of flowering in Citrus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fruit-dependent epigenetic regulation of flowering in Citrus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Agustí Fonfría, Manuel es_ES
dc.contributor.author Mesejo Conejos, Carlos es_ES
dc.contributor.author Muñoz-Fambuena, Natalia es_ES
dc.contributor.author Vera Sirera, Francisco José es_ES
dc.contributor.author de Lucas, Miguel es_ES
dc.contributor.author Martinez Fuentes, Amparo es_ES
dc.contributor.author Reig Valor, Carmina es_ES
dc.contributor.author Iglesias, Domingo J. es_ES
dc.contributor.author Primo-Millo, Eduardo es_ES
dc.contributor.author BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL es_ES
dc.date.accessioned 2021-04-17T03:33:00Z
dc.date.available 2021-04-17T03:33:00Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 0028-646X es_ES
dc.identifier.uri http://hdl.handle.net/10251/165289
dc.description.abstract [EN] In many perennial plants, seasonal flowering is primarily controlled by environmental conditions, but in certain polycarpic plants, environmental signals are locally gated by the presence of developing fruits initiated in the previous season through an unknown mechanism. Polycarpy is defined as the ability of plants to undergo several rounds of reproduction during their lifetime, alternating vegetative and reproductive meristems in the same individual. To understand how fruits regulate flowering in polycarpic plants, we focused on alternate bearing in Citrus trees that had been experimentally established as fully flowering or nonflowering. We found that the presence of the fruit causes epigenetic changes correlating with the induction of the CcMADS19 floral repressor, which prevents the activation of the floral promoter CiFT2 even in the presence of the floral inductive signals. By contrast, newly emerging shoots display an opposite epigenetic scenario associated with CcMADS19 repression, thereby allowing the activation of CiFT2 the following cold season. es_ES
dc.description.sponsorship We thank Francisco Madueno (IBMCP-UPV) for useful comments on the manuscript. The work described in this paper was partially supported by grants BFU2016-80621-P (to MAB) and UNIPA C-XXVI, Italy (to NM-F). We also acknowledge financial support by the Spanish Ministry of Economy and Competitiveness through grant nos RTA2009-00147-CO2 and RTA2013-00024-CO2 (to MA, CM, CR and AM-F). es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof New Phytologist es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alternate bearing es_ES
dc.subject CcMADS19 es_ES
dc.subject Citrus es_ES
dc.subject Flowering es_ES
dc.subject FT es_ES
dc.subject Chromatin remodelling es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Fruit-dependent epigenetic regulation of flowering in Citrus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/nph.16044 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2016-80621-P/ES/ANÁLISIS EVOLUTIVO DE UN 'HUB' FUNCIONAL EN PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Università degli Studi di Palermo//UNIPA C-XXVI/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2009-00147-C02-02/ES/Control de la producción alternante en los cítricos: factores nutricionales y hormonales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2013-00024-C02-02/ES/La brotación de otoño y su relación con la floración en los agrios. Control hormonal y genético./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.description.bibliographicCitation Agustí Fonfría, M.; Mesejo Conejos, C.; Muñoz-Fambuena, N.; Vera Sirera, FJ.; De Lucas, M.; Martinez Fuentes, A.; Reig Valor, C.... (2020). Fruit-dependent epigenetic regulation of flowering in Citrus. New Phytologist. 225(1):376-384. https://doi.org/10.1111/nph.16044 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/nph.16044 es_ES
dc.description.upvformatpinicio 376 es_ES
dc.description.upvformatpfin 384 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 225 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 31273802 es_ES
dc.relation.pasarela S\393707 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Università degli Studi di Palermo
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Albani, M. C., & Coupland, G. (2010). Comparative Analysis of Flowering in Annual and Perennial Plants. Plant Development, 323-348. doi:10.1016/s0070-2153(10)91011-9 es_ES
dc.description.references Andrés, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13(9), 627-639. doi:10.1038/nrg3291 es_ES
dc.description.references Balanzà, V., Martínez-Fernández, I., Sato, S., Yanofsky, M. F., Kaufmann, K., Angenent, G. C., … Ferrándiz, C. (2018). Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nature Communications, 9(1). doi:10.1038/s41467-018-03067-5 es_ES
dc.description.references Bergonzi, S., Albani, M. C., Loren van Themaat, E. V., Nordström, K. J. V., Wang, R., Schneeberger, K., … Coupland, G. (2013). Mechanisms of Age-Dependent Response to Winter Temperature in Perennial Flowering of Arabis alpina. Science, 340(6136), 1094-1097. doi:10.1126/science.1234116 es_ES
dc.description.references Berry, S., & Dean, C. (2015). Environmental perception and epigenetic memory: mechanistic insight throughFLC. The Plant Journal, 83(1), 133-148. doi:10.1111/tpj.12869 es_ES
dc.description.references Blázquez, M. A., Ahn, J. H., & Weigel, D. (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nature Genetics, 33(2), 168-171. doi:10.1038/ng1085 es_ES
dc.description.references Bratzel, F., & Turck, F. (2015). Molecular memories in the regulation of seasonal flowering: from competence to cessation. Genome Biology, 16(1). doi:10.1186/s13059-015-0770-6 es_ES
dc.description.references Chang, S., & Pikaard, C. S. (2005). Transcript Profiling in Arabidopsis Reveals Complex Responses to Global Inhibition of DNA Methylation and Histone Deacetylation*[boxs]. Journal of Biological Chemistry, 280(1), 796-804. doi:10.1074/jbc.m409053200 es_ES
dc.description.references Charnov, E. L., & Schaffer, W. M. (1973). Life-History Consequences of Natural Selection: Cole’s Result Revisited. The American Naturalist, 107(958), 791-793. doi:10.1086/282877 es_ES
dc.description.references Chica, E. J., & Albrigo, L. G. (2013). Expression of Flower Promoting Genes in Sweet Orange during Floral Inductive Water Deficits. Journal of the American Society for Horticultural Science, 138(2), 88-94. doi:10.21273/jashs.138.2.88 es_ES
dc.description.references Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x es_ES
dc.description.references Cole, L. C. (1954). The Population Consequences of Life History Phenomena. The Quarterly Review of Biology, 29(2), 103-137. doi:10.1086/400074 es_ES
dc.description.references Deng, W., Ying, H., Helliwell, C. A., Taylor, J. M., Peacock, W. J., & Dennis, E. S. (2011). FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proceedings of the National Academy of Sciences, 108(16), 6680-6685. doi:10.1073/pnas.1103175108 es_ES
dc.description.references Du, J., Johnson, L. M., Jacobsen, S. E., & Patel, D. J. (2015). DNA methylation pathways and their crosstalk with histone methylation. Nature Reviews Molecular Cell Biology, 16(9), 519-532. doi:10.1038/nrm4043 es_ES
dc.description.references Earley, K. W., Haag, J. R., Pontes, O., Opper, K., Juehne, T., Song, K., & Pikaard, C. S. (2006). Gateway-compatible vectors for plant functional genomics and proteomics. The Plant Journal, 45(4), 616-629. doi:10.1111/j.1365-313x.2005.02617.x es_ES
dc.description.references Jean Finnegan, E., Kovac, K. A., Jaligot, E., Sheldon, C. C., James Peacock, W., & Dennis, E. S. (2005). The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. The Plant Journal, 44(3), 420-432. doi:10.1111/j.1365-313x.2005.02541.x es_ES
dc.description.references Finnegan, E. J., & Dennis, E. S. (2007). Vernalization-Induced Trimethylation of Histone H3 Lysine 27 at FLC Is Not Maintained in Mitotically Quiescent Cells. Current Biology, 17(22), 1978-1983. doi:10.1016/j.cub.2007.10.026 es_ES
dc.description.references Forment, J., Gadea, J., Huerta, L., Abizanda, L., Agusti, J., Alamar, S., … Beltran, J. P. (2005). Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Molecular Biology, 57(3), 375-391. doi:10.1007/s11103-004-7926-1 es_ES
dc.description.references Gramzow, L., & Theißen, G. (2015). Phylogenomics reveals surprising sets of essential and dispensable clades of MIKCc-group MADS-box genes in flowering plants. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 324(4), 353-362. doi:10.1002/jez.b.22598 es_ES
dc.description.references Hartmann, U., Hohmann, S., Nettesheim, K., Wisman, E., Saedler, H., & Huijser, P. (2000). Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. The Plant Journal, 21(4), 351-360. doi:10.1046/j.1365-313x.2000.00682.x es_ES
dc.description.references Hou, X.-J., Liu, S.-R., Khan, M. R. G., Hu, C.-G., & Zhang, J.-Z. (2013). Genome-Wide Identification, Classification, Expression Profiling, and SSR Marker Development of the MADS-Box Gene Family in Citrus. Plant Molecular Biology Reporter, 32(1), 28-41. doi:10.1007/s11105-013-0597-9 es_ES
dc.description.references Jia, H., & Wang, N. (2014). Targeted Genome Editing of Sweet Orange Using Cas9/sgRNA. PLoS ONE, 9(4), e93806. doi:10.1371/journal.pone.0093806 es_ES
dc.description.references Jones, P. A. (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature Reviews Genetics, 13(7), 484-492. doi:10.1038/nrg3230 es_ES
dc.description.references Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., … Deng, X. W. (2007). Analysis of Transcription Factor HY5 Genomic Binding Sites Revealed Its Hierarchical Role in Light Regulation of Development. The Plant Cell, 19(3), 731-749. doi:10.1105/tpc.106.047688 es_ES
dc.description.references Martínez-Alcántara, B., Iglesias, D. J., Reig, C., Mesejo, C., Agustí, M., & Primo-Millo, E. (2015). Carbon utilization by fruit limits shoot growth in alternate-bearing citrus trees. Journal of Plant Physiology, 176, 108-117. doi:10.1016/j.jplph.2014.12.001 es_ES
dc.description.references Martínez-Fuentes, A., Mesejo, C., Reig, C., & Agustí, M. (2010). Timing of the inhibitory effect of fruit on return bloom of ‘Valencia’ sweet orange (Citrus sinensis (L.) Osbeck). Journal of the Science of Food and Agriculture, 90(11), 1936-1943. doi:10.1002/jsfa.4038 es_ES
dc.description.references Moss, G. I. (1969). Influence of Temperature and Photoperiod on Flower Induction and Inflorescence Development in Sweet Orange (Citrus SinensisL. Osbeck). Journal of Horticultural Science, 44(4), 311-320. doi:10.1080/00221589.1969.11514314 es_ES
dc.description.references Muñoz-Fambuena, N., Mesejo, C., Carmen González-Mas, M., Primo-Millo, E., Agustí, M., & Iglesias, D. J. (2011). Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Annals of Botany, 108(3), 511-519. doi:10.1093/aob/mcr164 es_ES
dc.description.references Nelson, J. D. (2006). Fast chromatin immunoprecipitation assay. Nucleic Acids Research, 34(1), e2-e2. doi:10.1093/nar/gnj004 es_ES
dc.description.references Nishikawa, F., Endo, T., Shimada, T., Fujii, H., Shimizu, T., Omura, M., & Ikoma, Y. (2007). Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). Journal of Experimental Botany, 58(14), 3915-3927. doi:10.1093/jxb/erm246 es_ES
dc.description.references Pien, S., Fleury, D., Mylne, J. S., Crevillen, P., Inzé, D., Avramova, Z., … Grossniklaus, U. (2008). ARABIDOPSIS TRITHORAX1 Dynamically RegulatesFLOWERING LOCUS CActivation via Histone 3 Lysine 4 Trimethylation. The Plant Cell, 20(3), 580-588. doi:10.1105/tpc.108.058172 es_ES
dc.description.references Reeves, P. A., He, Y., Schmitz, R. J., Amasino, R. M., Panella, L. W., & Richards, C. M. (2007). Evolutionary Conservation of the FLOWERING LOCUS C-Mediated Vernalization Response: Evidence From the Sugar Beet (Beta vulgaris). Genetics, 176(1), 295-307. doi:10.1534/genetics.106.069336 es_ES
dc.description.references Ruelens, P., de Maagd, R. A., Proost, S., Theißen, G., Geuten, K., & Kaufmann, K. (2013). FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nature Communications, 4(1). doi:10.1038/ncomms3280 es_ES
dc.description.references Sgamma, T., Jackson, A., Muleo, R., Thomas, B., & Massiah, A. (2014). TEMPRANILLO is a regulator of juvenility in plants. Scientific Reports, 4(1). doi:10.1038/srep03704 es_ES
dc.description.references Shalom, L., Samuels, S., Zur, N., Shlizerman, L., Zemach, H., Weissberg, M., … Sadka, A. (2012). Alternate Bearing in Citrus: Changes in the Expression of Flowering Control Genes and in Global Gene Expression in ON- versus OFF-Crop Trees. PLoS ONE, 7(10), e46930. doi:10.1371/journal.pone.0046930 es_ES
dc.description.references Sheldon, C. C., Rouse, D. T., Finnegan, E. J., Peacock, W. J., & Dennis, E. S. (2000). The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proceedings of the National Academy of Sciences, 97(7), 3753-3758. doi:10.1073/pnas.97.7.3753 es_ES
dc.description.references Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., & Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410(6832), 1116-1120. doi:10.1038/35074138 es_ES
dc.description.references Tamada, Y., Yun, J.-Y., Woo, S. chul, & Amasino, R. M. (2009). ARABIDOPSIS TRITHORAX-RELATED7 Is Required for Methylation of Lysine 4 of Histone H3 and for Transcriptional Activation of FLOWERING LOCUS C    . The Plant Cell, 21(10), 3257-3269. doi:10.1105/tpc.109.070060 es_ES
dc.description.references Wang, R., Farrona, S., Vincent, C., Joecker, A., Schoof, H., Turck, F., … Albani, M. C. (2009). PEP1 regulates perennial flowering in Arabis alpina. Nature, 459(7245), 423-427. doi:10.1038/nature07988 es_ES
dc.description.references Wells, C. E., Vendramin, E., Jimenez Tarodo, S., Verde, I., & Bielenberg, D. G. (2015). A genome-wide analysis of MADS-box genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biology, 15(1), 41. doi:10.1186/s12870-015-0436-2 es_ES
dc.description.references Whittaker, C., & Dean, C. (2017). The FLC Locus: A Platform for Discoveries in Epigenetics and Adaptation. Annual Review of Cell and Developmental Biology, 33(1), 555-575. doi:10.1146/annurev-cellbio-100616-060546 es_ES
dc.description.references Yang, H., Howard, M., & Dean, C. (2014). Antagonistic Roles for H3K36me3 and H3K27me3 in the Cold-Induced Epigenetic Switch at Arabidopsis FLC. Current Biology, 24(15), 1793-1797. doi:10.1016/j.cub.2014.06.047 es_ES
dc.description.references Zhou, C.-M., Zhang, T.-Q., Wang, X., Yu, S., Lian, H., Tang, H., … Wang, J.-W. (2013). Molecular Basis of Age-Dependent Vernalization in Cardamine flexuosa. Science, 340(6136), 1097-1100. doi:10.1126/science.1234340 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem