- -

Fruit-dependent epigenetic regulation of flowering in Citrus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fruit-dependent epigenetic regulation of flowering in Citrus

Mostrar el registro completo del ítem

Agustí Fonfría, M.; Mesejo Conejos, C.; Muñoz-Fambuena, N.; Vera Sirera, FJ.; De Lucas, M.; Martinez Fuentes, A.; Reig Valor, C.... (2020). Fruit-dependent epigenetic regulation of flowering in Citrus. New Phytologist. 225(1):376-384. https://doi.org/10.1111/nph.16044

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165289

Ficheros en el ítem

Metadatos del ítem

Título: Fruit-dependent epigenetic regulation of flowering in Citrus
Autor: Agustí Fonfría, Manuel Mesejo Conejos, Carlos Muñoz-Fambuena, Natalia Vera Sirera, Francisco José de Lucas, Miguel Martinez Fuentes, Amparo Reig Valor, Carmina Iglesias, Domingo J. Primo-Millo, Eduardo BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal
Fecha difusión:
Resumen:
[EN] In many perennial plants, seasonal flowering is primarily controlled by environmental conditions, but in certain polycarpic plants, environmental signals are locally gated by the presence of developing fruits initiated ...[+]
Palabras clave: Alternate bearing , CcMADS19 , Citrus , Flowering , FT , Chromatin remodelling
Derechos de uso: Reserva de todos los derechos
Fuente:
New Phytologist. (issn: 0028-646X )
DOI: 10.1111/nph.16044
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/nph.16044
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BFU2016-80621-P/ES/ANÁLISIS EVOLUTIVO DE UN 'HUB' FUNCIONAL EN PLANTAS/
info:eu-repo/grantAgreement/Università degli Studi di Palermo//UNIPA C-XXVI/
info:eu-repo/grantAgreement/MICINN//RTA2009-00147-C02-02/ES/Control de la producción alternante en los cítricos: factores nutricionales y hormonales/
info:eu-repo/grantAgreement/MINECO//RTA2013-00024-C02-02/ES/La brotación de otoño y su relación con la floración en los agrios. Control hormonal y genético./
Agradecimientos:
We thank Francisco Madueno (IBMCP-UPV) for useful comments on the manuscript. The work described in this paper was partially supported by grants BFU2016-80621-P (to MAB) and UNIPA C-XXVI, Italy (to NM-F). We also acknowledge ...[+]
Tipo: Artículo

References

Albani, M. C., & Coupland, G. (2010). Comparative Analysis of Flowering in Annual and Perennial Plants. Plant Development, 323-348. doi:10.1016/s0070-2153(10)91011-9

Andrés, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13(9), 627-639. doi:10.1038/nrg3291

Balanzà, V., Martínez-Fernández, I., Sato, S., Yanofsky, M. F., Kaufmann, K., Angenent, G. C., … Ferrándiz, C. (2018). Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nature Communications, 9(1). doi:10.1038/s41467-018-03067-5 [+]
Albani, M. C., & Coupland, G. (2010). Comparative Analysis of Flowering in Annual and Perennial Plants. Plant Development, 323-348. doi:10.1016/s0070-2153(10)91011-9

Andrés, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13(9), 627-639. doi:10.1038/nrg3291

Balanzà, V., Martínez-Fernández, I., Sato, S., Yanofsky, M. F., Kaufmann, K., Angenent, G. C., … Ferrándiz, C. (2018). Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nature Communications, 9(1). doi:10.1038/s41467-018-03067-5

Bergonzi, S., Albani, M. C., Loren van Themaat, E. V., Nordström, K. J. V., Wang, R., Schneeberger, K., … Coupland, G. (2013). Mechanisms of Age-Dependent Response to Winter Temperature in Perennial Flowering of Arabis alpina. Science, 340(6136), 1094-1097. doi:10.1126/science.1234116

Berry, S., & Dean, C. (2015). Environmental perception and epigenetic memory: mechanistic insight throughFLC. The Plant Journal, 83(1), 133-148. doi:10.1111/tpj.12869

Blázquez, M. A., Ahn, J. H., & Weigel, D. (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nature Genetics, 33(2), 168-171. doi:10.1038/ng1085

Bratzel, F., & Turck, F. (2015). Molecular memories in the regulation of seasonal flowering: from competence to cessation. Genome Biology, 16(1). doi:10.1186/s13059-015-0770-6

Chang, S., & Pikaard, C. S. (2005). Transcript Profiling in Arabidopsis Reveals Complex Responses to Global Inhibition of DNA Methylation and Histone Deacetylation*[boxs]. Journal of Biological Chemistry, 280(1), 796-804. doi:10.1074/jbc.m409053200

Charnov, E. L., & Schaffer, W. M. (1973). Life-History Consequences of Natural Selection: Cole’s Result Revisited. The American Naturalist, 107(958), 791-793. doi:10.1086/282877

Chica, E. J., & Albrigo, L. G. (2013). Expression of Flower Promoting Genes in Sweet Orange during Floral Inductive Water Deficits. Journal of the American Society for Horticultural Science, 138(2), 88-94. doi:10.21273/jashs.138.2.88

Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x

Cole, L. C. (1954). The Population Consequences of Life History Phenomena. The Quarterly Review of Biology, 29(2), 103-137. doi:10.1086/400074

Deng, W., Ying, H., Helliwell, C. A., Taylor, J. M., Peacock, W. J., & Dennis, E. S. (2011). FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proceedings of the National Academy of Sciences, 108(16), 6680-6685. doi:10.1073/pnas.1103175108

Du, J., Johnson, L. M., Jacobsen, S. E., & Patel, D. J. (2015). DNA methylation pathways and their crosstalk with histone methylation. Nature Reviews Molecular Cell Biology, 16(9), 519-532. doi:10.1038/nrm4043

Earley, K. W., Haag, J. R., Pontes, O., Opper, K., Juehne, T., Song, K., & Pikaard, C. S. (2006). Gateway-compatible vectors for plant functional genomics and proteomics. The Plant Journal, 45(4), 616-629. doi:10.1111/j.1365-313x.2005.02617.x

Jean Finnegan, E., Kovac, K. A., Jaligot, E., Sheldon, C. C., James Peacock, W., & Dennis, E. S. (2005). The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. The Plant Journal, 44(3), 420-432. doi:10.1111/j.1365-313x.2005.02541.x

Finnegan, E. J., & Dennis, E. S. (2007). Vernalization-Induced Trimethylation of Histone H3 Lysine 27 at FLC Is Not Maintained in Mitotically Quiescent Cells. Current Biology, 17(22), 1978-1983. doi:10.1016/j.cub.2007.10.026

Forment, J., Gadea, J., Huerta, L., Abizanda, L., Agusti, J., Alamar, S., … Beltran, J. P. (2005). Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Molecular Biology, 57(3), 375-391. doi:10.1007/s11103-004-7926-1

Gramzow, L., & Theißen, G. (2015). Phylogenomics reveals surprising sets of essential and dispensable clades of MIKCc-group MADS-box genes in flowering plants. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 324(4), 353-362. doi:10.1002/jez.b.22598

Hartmann, U., Hohmann, S., Nettesheim, K., Wisman, E., Saedler, H., & Huijser, P. (2000). Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. The Plant Journal, 21(4), 351-360. doi:10.1046/j.1365-313x.2000.00682.x

Hou, X.-J., Liu, S.-R., Khan, M. R. G., Hu, C.-G., & Zhang, J.-Z. (2013). Genome-Wide Identification, Classification, Expression Profiling, and SSR Marker Development of the MADS-Box Gene Family in Citrus. Plant Molecular Biology Reporter, 32(1), 28-41. doi:10.1007/s11105-013-0597-9

Jia, H., & Wang, N. (2014). Targeted Genome Editing of Sweet Orange Using Cas9/sgRNA. PLoS ONE, 9(4), e93806. doi:10.1371/journal.pone.0093806

Jones, P. A. (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature Reviews Genetics, 13(7), 484-492. doi:10.1038/nrg3230

Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., … Deng, X. W. (2007). Analysis of Transcription Factor HY5 Genomic Binding Sites Revealed Its Hierarchical Role in Light Regulation of Development. The Plant Cell, 19(3), 731-749. doi:10.1105/tpc.106.047688

Martínez-Alcántara, B., Iglesias, D. J., Reig, C., Mesejo, C., Agustí, M., & Primo-Millo, E. (2015). Carbon utilization by fruit limits shoot growth in alternate-bearing citrus trees. Journal of Plant Physiology, 176, 108-117. doi:10.1016/j.jplph.2014.12.001

Martínez-Fuentes, A., Mesejo, C., Reig, C., & Agustí, M. (2010). Timing of the inhibitory effect of fruit on return bloom of ‘Valencia’ sweet orange (Citrus sinensis (L.) Osbeck). Journal of the Science of Food and Agriculture, 90(11), 1936-1943. doi:10.1002/jsfa.4038

Moss, G. I. (1969). Influence of Temperature and Photoperiod on Flower Induction and Inflorescence Development in Sweet Orange (Citrus SinensisL. Osbeck). Journal of Horticultural Science, 44(4), 311-320. doi:10.1080/00221589.1969.11514314

Muñoz-Fambuena, N., Mesejo, C., Carmen González-Mas, M., Primo-Millo, E., Agustí, M., & Iglesias, D. J. (2011). Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Annals of Botany, 108(3), 511-519. doi:10.1093/aob/mcr164

Nelson, J. D. (2006). Fast chromatin immunoprecipitation assay. Nucleic Acids Research, 34(1), e2-e2. doi:10.1093/nar/gnj004

Nishikawa, F., Endo, T., Shimada, T., Fujii, H., Shimizu, T., Omura, M., & Ikoma, Y. (2007). Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). Journal of Experimental Botany, 58(14), 3915-3927. doi:10.1093/jxb/erm246

Pien, S., Fleury, D., Mylne, J. S., Crevillen, P., Inzé, D., Avramova, Z., … Grossniklaus, U. (2008). ARABIDOPSIS TRITHORAX1 Dynamically RegulatesFLOWERING LOCUS CActivation via Histone 3 Lysine 4 Trimethylation. The Plant Cell, 20(3), 580-588. doi:10.1105/tpc.108.058172

Reeves, P. A., He, Y., Schmitz, R. J., Amasino, R. M., Panella, L. W., & Richards, C. M. (2007). Evolutionary Conservation of the FLOWERING LOCUS C-Mediated Vernalization Response: Evidence From the Sugar Beet (Beta vulgaris). Genetics, 176(1), 295-307. doi:10.1534/genetics.106.069336

Ruelens, P., de Maagd, R. A., Proost, S., Theißen, G., Geuten, K., & Kaufmann, K. (2013). FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nature Communications, 4(1). doi:10.1038/ncomms3280

Sgamma, T., Jackson, A., Muleo, R., Thomas, B., & Massiah, A. (2014). TEMPRANILLO is a regulator of juvenility in plants. Scientific Reports, 4(1). doi:10.1038/srep03704

Shalom, L., Samuels, S., Zur, N., Shlizerman, L., Zemach, H., Weissberg, M., … Sadka, A. (2012). Alternate Bearing in Citrus: Changes in the Expression of Flowering Control Genes and in Global Gene Expression in ON- versus OFF-Crop Trees. PLoS ONE, 7(10), e46930. doi:10.1371/journal.pone.0046930

Sheldon, C. C., Rouse, D. T., Finnegan, E. J., Peacock, W. J., & Dennis, E. S. (2000). The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proceedings of the National Academy of Sciences, 97(7), 3753-3758. doi:10.1073/pnas.97.7.3753

Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., & Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410(6832), 1116-1120. doi:10.1038/35074138

Tamada, Y., Yun, J.-Y., Woo, S. chul, & Amasino, R. M. (2009). ARABIDOPSIS TRITHORAX-RELATED7 Is Required for Methylation of Lysine 4 of Histone H3 and for Transcriptional Activation of FLOWERING LOCUS C    . The Plant Cell, 21(10), 3257-3269. doi:10.1105/tpc.109.070060

Wang, R., Farrona, S., Vincent, C., Joecker, A., Schoof, H., Turck, F., … Albani, M. C. (2009). PEP1 regulates perennial flowering in Arabis alpina. Nature, 459(7245), 423-427. doi:10.1038/nature07988

Wells, C. E., Vendramin, E., Jimenez Tarodo, S., Verde, I., & Bielenberg, D. G. (2015). A genome-wide analysis of MADS-box genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biology, 15(1), 41. doi:10.1186/s12870-015-0436-2

Whittaker, C., & Dean, C. (2017). The FLC Locus: A Platform for Discoveries in Epigenetics and Adaptation. Annual Review of Cell and Developmental Biology, 33(1), 555-575. doi:10.1146/annurev-cellbio-100616-060546

Yang, H., Howard, M., & Dean, C. (2014). Antagonistic Roles for H3K36me3 and H3K27me3 in the Cold-Induced Epigenetic Switch at Arabidopsis FLC. Current Biology, 24(15), 1793-1797. doi:10.1016/j.cub.2014.06.047

Zhou, C.-M., Zhang, T.-Q., Wang, X., Yu, S., Lian, H., Tang, H., … Wang, J.-W. (2013). Molecular Basis of Age-Dependent Vernalization in Cardamine flexuosa. Science, 340(6136), 1097-1100. doi:10.1126/science.1234340

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem