- -

Defect-Engineered Ruthenium MOFs as Versatile Heterogeneous Hydrogenation Catalysts

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Defect-Engineered Ruthenium MOFs as Versatile Heterogeneous Hydrogenation Catalysts

Show full item record

Epp, K.; Luz, I.; Heinz, WR.; Rapeyko, A.; Llabrés I Xamena, FX.; Fischer, RA. (2020). Defect-Engineered Ruthenium MOFs as Versatile Heterogeneous Hydrogenation Catalysts. ChemCatChem. 12(6):1720-1725. https://doi.org/10.1002/cctc.201902079

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165293

Files in this item

Item Metadata

Title: Defect-Engineered Ruthenium MOFs as Versatile Heterogeneous Hydrogenation Catalysts
Author: Epp, Konstantin Luz, Ignacio Heinz, Werner R. Rapeyko, Anastasia Llabrés i Xamena, Francesc Xavier Fischer, Roland A.
UPV Unit: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Issued date:
Abstract:
[EN] Ruthenium MOF [Ru-3(BTC)(2)Y-y] . G(g) (BTC=benzene-1,3,5-tricarboxylate; Y=counter ions=Cl-, OH-, OAc-; G=guest molecules=HOAc, H2O) is modified via a mixed-linker approach, using mixtures of BTC and pyridine-3,5-d ...[+]
Subjects: Metal-Organic Frameworks , Defects , Ruthenium , Ru-BTC , Ru-MOF , HKUST-1 , Defect-Engineering , MOF catalysis , DEMOF
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
ChemCatChem. (issn: 1867-3880 )
DOI: 10.1002/cctc.201902079
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/cctc.201902079
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/
info:eu-repo/grantAgreement/DFG//FI-502%2F32-1/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Thanks:
Funding by the Spanish Government is acknowledged through projects MAT2017-82288-C2-1-P and Severo Ochoa (SEV-2016-0683). This project is further funded by the Deutsche Forschungsgemeinschaft grant no. FI-502/32-1 ("DEMOFs"). ...[+]
Type: Artículo

References

Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k

Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:  Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374y

Wang, Z., & Cohen, S. M. (2009). Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 38(5), 1315. doi:10.1039/b802258p [+]
Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k

Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:  Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374y

Wang, Z., & Cohen, S. M. (2009). Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 38(5), 1315. doi:10.1039/b802258p

Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., … De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078u

Zheng, J., Ye, J., Ortuño, M. A., Fulton, J. L., Gutiérrez, O. Y., Camaioni, D. M., … Lercher, J. A. (2019). Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal–Organic Framework. Journal of the American Chemical Society, 141(23), 9292-9304. doi:10.1021/jacs.9b02902

Rogge, S. M. J., Bavykina, A., Hajek, J., Garcia, H., Olivos-Suarez, A. I., Sepúlveda-Escribano, A., … Gascon, J. (2017). Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 46(11), 3134-3184. doi:10.1039/c7cs00033b

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063

Valvekens, P., Vermoortele, F., & De Vos, D. (2013). Metal–organic frameworks as catalysts: the role of metal active sites. Catalysis Science & Technology, 3(6), 1435. doi:10.1039/c3cy20813c

Doonan, C. J., & Sumby, C. J. (2017). Metal–organic framework catalysis. CrystEngComm, 19(29), 4044-4048. doi:10.1039/c7ce90106b

Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256h

Wang, Y., & Wöll, C. (2018). Chemical Reactions at Isolated Single-Sites Inside Metal–Organic Frameworks. Catalysis Letters, 148(8), 2201-2222. doi:10.1007/s10562-018-2432-2

Genna, D. T., Pfund, L. Y., Samblanet, D. C., Wong-Foy, A. G., Matzger, A. J., & Sanford, M. S. (2016). Rhodium Hydrogenation Catalysts Supported in Metal Organic Frameworks: Influence of the Framework on Catalytic Activity and Selectivity. ACS Catalysis, 6(6), 3569-3574. doi:10.1021/acscatal.6b00404

Chen, H., He, Y., Pfefferle, L. D., Pu, W., Wu, Y., & Qi, S. (2018). Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal-Organic Frameworks in the Aqueous Phase. ChemCatChem, 10(12), 2558-2570. doi:10.1002/cctc.201800211

Marx, S., Kleist, W., Huang, J., Maciejewski, M., & Baiker, A. (2010). Tuning functional sites and thermal stability of mixed-linker MOFs based on MIL-53(Al). Dalton Transactions, 39(16), 3795. doi:10.1039/c002483j

Fang, Z., Bueken, B., De Vos, D. E., & Fischer, R. A. (2015). Defect-Engineered Metal-Organic Frameworks. Angewandte Chemie International Edition, 54(25), 7234-7254. doi:10.1002/anie.201411540

Dissegna, S., Epp, K., Heinz, W. R., Kieslich, G., & Fischer, R. A. (2018). Defective Metal-Organic Frameworks. Advanced Materials, 30(37), 1704501. doi:10.1002/adma.201704501

Zhang, Y.-B., Furukawa, H., Ko, N., Nie, W., Park, H. J., Okajima, S., … Yaghi, O. M. (2015). Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal–Organic Framework-177. Journal of the American Chemical Society, 137(7), 2641-2650. doi:10.1021/ja512311a

Drache, F., Cirujano, F. G., Nguyen, K. D., Bon, V., Senkovska, I., Llabrés i Xamena, F. X., & Kaskel, S. (2018). Anion Exchange and Catalytic Functionalization of the Zirconium-Based Metal–Organic Framework DUT-67. Crystal Growth & Design, 18(9), 5492-5500. doi:10.1021/acs.cgd.8b00832

Zhang, W., Kauer, M., Halbherr, O., Epp, K., Guo, P., Gonzalez, M. I., … Fischer, R. A. (2016). Ruthenium Metal-Organic Frameworks with Different Defect Types: Influence on Porosity, Sorption, and Catalytic Properties. Chemistry - A European Journal, 22(40), 14297-14307. doi:10.1002/chem.201602641

Kozachuk, O., Yusenko, K., Noei, H., Wang, Y., Walleck, S., Glaser, T., & Fischer, R. A. (2011). Solvothermal growth of a ruthenium metal–organic framework featuring HKUST-1 structure type as thin films on oxide surfaces. Chemical Communications, 47(30), 8509. doi:10.1039/c1cc11107h

Kozachuk, O., Luz, I., Llabrés i Xamena, F. X., Noei, H., Kauer, M., Albada, H. B., … Fischer, R. A. (2014). Multifunctional, Defect-Engineered Metal-Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties. Angewandte Chemie International Edition, 53(27), 7058-7062. doi:10.1002/anie.201311128

Agirrezabal-Telleria, I., Luz, I., Ortuño, M. A., Oregui-Bengoechea, M., Gandarias, I., López, N., … Soukri, M. (2019). Gas reactions under intrapore condensation regime within tailored metal–organic framework catalysts. Nature Communications, 10(1). doi:10.1038/s41467-019-10013-6

Zhang, W., Kozachuk, O., Medishetty, R., Schneemann, A., Wagner, R., Khaletskaya, K., … Fischer, R. A. (2015). Controlled SBU Approaches to Isoreticular Metal-Organic Framework Ruthenium-Analogues of HKUST-1. European Journal of Inorganic Chemistry, 2015(23), 3913-3920. doi:10.1002/ejic.201500478

Heinz, W. R., Kratky, T., Drees, M., Wimmer, A., Tomanec, O., Günther, S., … Fischer, R. A. (2019). Mixed precious-group metal–organic frameworks: a case study of the HKUST-1 analogue [RuxRh3−x(BTC)2]. Dalton Transactions, 48(32), 12031-12039. doi:10.1039/c9dt01198f

Bäckvall, J.-E. (2002). Transition metal hydrides as active intermediates in hydrogen transfer reactions. Journal of Organometallic Chemistry, 652(1-2), 105-111. doi:10.1016/s0022-328x(02)01316-5

Chowdhury, R. L., & Bäckvall, J.-E. (1991). Efficient ruthenium-catalysed transfer hydrogenation of ketones by propan-2-ol. J. Chem. Soc., Chem. Commun., 0(16), 1063-1064. doi:10.1039/c39910001063

Ahlsten, N., Bartoszewicz, A., & Martín-Matute, B. (2012). Allylic alcohols as synthetic enolate equivalents: Isomerisation and tandem reactions catalysed by transition metal complexes. Dalton Transactions, 41(6), 1660. doi:10.1039/c1dt11678a

Ahlsten, N., Lundberg, H., & Martín-Matute, B. (2010). Rhodium-catalysed isomerisation of allylic alcohols in water at ambient temperature. Green Chemistry, 12(9), 1628. doi:10.1039/c004964f

Cahard, D., Gaillard, S., & Renaud, J.-L. (2015). Asymmetric isomerization of allylic alcohols. Tetrahedron Letters, 56(45), 6159-6169. doi:10.1016/j.tetlet.2015.09.098

Xia, T., Wei, Z., Spiegelberg, B., Jiao, H., Hinze, S., & de Vries, J. G. (2018). Isomerization of Allylic Alcohols to Ketones Catalyzed by Well-Defined Iron PNP Pincer Catalysts. Chemistry - A European Journal, 24(16), 4043-4049. doi:10.1002/chem.201705454

Scalambra, F., Lorenzo-Luis, P., de los Rios, I., & Romerosa, A. (2019). Isomerization of allylic alcohols in water catalyzed by transition metal complexes. Coordination Chemistry Reviews, 393, 118-148. doi:10.1016/j.ccr.2019.04.012

Yamaguchi, K., Koike, T., Kotani, M., Matsushita, M., Shinachi, S., & Mizuno, N. (2005). Synthetic Scope and Mechanistic Studies of Ru(OH)x/Al2O3-Catalyzed Heterogeneous Hydrogen-Transfer Reactions. Chemistry - A European Journal, 11(22), 6574-6582. doi:10.1002/chem.200500539

Mitchell, R. W., Spencer, A., & Wilkinson, G. (1973). Carboxylato-triphenylphosphine complexes of ruthenium, cationic triphenylphosphine complexes derived from them, and their behaviour as homogeneous hydrogenation catalysts for alkenes. Journal of the Chemical Society, Dalton Transactions, (8), 846. doi:10.1039/dt9730000846

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record