- -

Formulation of alkali-activated slag binder destined for use in developing countries

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Formulation of alkali-activated slag binder destined for use in developing countries

Mostrar el registro completo del ítem

Bella, N.; Gudiel, E.; Soriano Martinez, L.; Font-Pérez, A.; Borrachero Rosado, MV.; Paya Bernabeu, JJ.; Monzó Balbuena, JM. (2020). Formulation of alkali-activated slag binder destined for use in developing countries. Applied Sciences. 10(24):1-15. https://doi.org/10.3390/app10249088

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165295

Ficheros en el ítem

Metadatos del ítem

Título: Formulation of alkali-activated slag binder destined for use in developing countries
Autor: Bella, Nabil Gudiel, Edwin Soriano Martinez, Lourdes Font-Pérez, Alba Borrachero Rosado, María Victoria Paya Bernabeu, Jorge Juan Monzó Balbuena, José Mª
Entidad UPV: Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] Worldwide cement production is around 4.2 billion tons, and the fabrication of one ton of ordinary Portland cement emits around 900 kg of CO2. Blast furnace slag (BFS) is a byproduct used to produce alkali-activated ...[+]
Palabras clave: Alkali-activated material , Blast furnace slag , Activators , Mechanical properties , Microstructure , Developing countries
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10249088
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app10249088
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097612-B-C21/ES/NUEVOS RETOS EN CEMENTOS ACTIVADOS ALCALINAMENTE:SOSTENIBILIDAD Y EVALUACION AMBIENTAL/
Agradecimientos:
We would also like to thank the Spanish Government MINECO/FEDER (ECOSOST project RTI-2018-097612-B-C21) for supporting this research.
Tipo: Artículo

References

Statista Major Countries in Worldwide Cement Production from 2015 to 2019https://www.statista.com/statistics/267364/world-cement-production-by-country/

Proaño, L., Sarmiento, A. T., Figueredo, M., & Cobo, M. (2020). Techno-economic evaluation of indirect carbonation for CO2 emissions capture in cement industry: A system dynamics approach. Journal of Cleaner Production, 263, 121457. doi:10.1016/j.jclepro.2020.121457

Di Maria, A., Snellings, R., Alaerts, L., Quaghebeur, M., & Van Acker, K. (2020). Environmental assessment of CO2 mineralisation for sustainable construction materials. International Journal of Greenhouse Gas Control, 93, 102882. doi:10.1016/j.ijggc.2019.102882 [+]
Statista Major Countries in Worldwide Cement Production from 2015 to 2019https://www.statista.com/statistics/267364/world-cement-production-by-country/

Proaño, L., Sarmiento, A. T., Figueredo, M., & Cobo, M. (2020). Techno-economic evaluation of indirect carbonation for CO2 emissions capture in cement industry: A system dynamics approach. Journal of Cleaner Production, 263, 121457. doi:10.1016/j.jclepro.2020.121457

Di Maria, A., Snellings, R., Alaerts, L., Quaghebeur, M., & Van Acker, K. (2020). Environmental assessment of CO2 mineralisation for sustainable construction materials. International Journal of Greenhouse Gas Control, 93, 102882. doi:10.1016/j.ijggc.2019.102882

Hassan, A., Arif, M., & Shariq, M. (2019). Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure. Journal of Cleaner Production, 223, 704-728. doi:10.1016/j.jclepro.2019.03.051

Recovery (Recycling Technology Worldwide) Slag Recyclinghttps://www.recovery-worldwide.com/en/artikel/slag-recycling_3528047.html

Van Deventer, J. S. J., Provis, J. L., & Duxson, P. (2012). Technical and commercial progress in the adoption of geopolymer cement. Minerals Engineering, 29, 89-104. doi:10.1016/j.mineng.2011.09.009

Provis, J. L. (2018). Alkali-activated materials. Cement and Concrete Research, 114, 40-48. doi:10.1016/j.cemconres.2017.02.009

Bakharev, T., Sanjayan, J. G., & Cheng, Y.-B. (2002). Sulfate attack on alkali-activated slag concrete. Cement and Concrete Research, 32(2), 211-216. doi:10.1016/s0008-8846(01)00659-7

Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b

Shi, C. (1996). Strength, pore structure and permeability of alkali-activated slag mortars. Cement and Concrete Research, 26(12), 1789-1799. doi:10.1016/s0008-8846(96)00174-3

Fernández-Jiménez, A., Palomo, J. G., & Puertas, F. (1999). Alkali-activated slag mortars. Cement and Concrete Research, 29(8), 1313-1321. doi:10.1016/s0008-8846(99)00154-4

Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., & Fernández-Jiménez, A. (2014). A review on alkaline activation: new analytical perspectives. Materiales de Construcción, 64(315), e022. doi:10.3989/mc.2014.00314

Akturk, B., Kizilkanat, A. B., & Kabay, N. (2019). Effect of calcium hydroxide on fresh state behavior of sodium carbonate activated blast furnace slag pastes. Construction and Building Materials, 212, 388-399. doi:10.1016/j.conbuildmat.2019.03.328

Awoyera, P., & Adesina, A. (2019). A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials, 11, e00268. doi:10.1016/j.cscm.2019.e00268

Jin, F., & Al-Tabbaa, A. (2015). Strength and drying shrinkage of slag paste activated by sodium carbonate and reactive MgO. Construction and Building Materials, 81, 58-65. doi:10.1016/j.conbuildmat.2015.01.082

Ke, X., Bernal, S. A., & Provis, J. L. (2016). Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cement and Concrete Research, 81, 24-37. doi:10.1016/j.cemconres.2015.11.012

Kovtun, M., Kearsley, E. P., & Shekhovtsova, J. (2015). Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate. Cement and Concrete Research, 72, 1-9. doi:10.1016/j.cemconres.2015.02.014

United Nations Sustainable Development Goalshttps://www.un.org/sustainabledevelopment/

Methods of Testing Cement Part 1: Determination of Strengthhttps://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0060675

Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2007). Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders. Cement and Concrete Research, 37(6), 933-941. doi:10.1016/j.cemconres.2007.02.006

Wang, S.-D., Scrivener, K. L., & Pratt, P. L. (1994). Factors affecting the strength of alkali-activated slag. Cement and Concrete Research, 24(6), 1033-1043. doi:10.1016/0008-8846(94)90026-4

De Moraes Pinheiro, S. M., Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2018). Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construction and Building Materials, 178, 327-338. doi:10.1016/j.conbuildmat.2018.05.157

Yuan, B., Yu, Q. L., & Brouwers, H. J. H. (2017). Time-dependent characterization of Na 2 CO 3 activated slag. Cement and Concrete Composites, 84, 188-197. doi:10.1016/j.cemconcomp.2017.09.005

Collins, F., & Sanjayan, J. . (1998). Early Age Strength and Workability of Slag Pastes Activated by NaOH and Na2CO3. Cement and Concrete Research, 28(5), 655-664. doi:10.1016/s0008-8846(98)00025-8

Li, N., Shi, C., & Zhang, Z. (2019). Understanding the roles of activators towards setting and hardening control of alkali-activated slag cement. Composites Part B: Engineering, 171, 34-45. doi:10.1016/j.compositesb.2019.04.024

Fernández-Jiménez, A., & Puertas, F. (2003). Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Advances in Cement Research, 15(3), 129-136. doi:10.1680/adcr.2003.15.3.129

Bernal, S. A., Provis, J. L., Myers, R. J., San Nicolas, R., & van Deventer, J. S. J. (2014). Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Materials and Structures, 48(3), 517-529. doi:10.1617/s11527-014-0412-6

Jiao, Z., Wang, Y., Zheng, W., & Huang, W. (2019). Effect of the activator on the performance of alkali-activated slag mortars with pottery sand as fine aggregate. Construction and Building Materials, 197, 83-90. doi:10.1016/j.conbuildmat.2018.11.178

Haha, M. B., Lothenbach, B., Le Saout, G., & Winnefeld, F. (2012). Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al2O3. Cement and Concrete Research, 42(1), 74-83. doi:10.1016/j.cemconres.2011.08.005

Payá, J., Monzó, J., Borrachero, M. V., Velázquez, S., & Bonilla, M. (2003). Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R–lime pastes. Cement and Concrete Research, 33(7), 1085-1091. doi:10.1016/s0008-8846(03)00014-0

Puertas, F., & Torres-Carrasco, M. (2014). Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cement and Concrete Research, 57, 95-104. doi:10.1016/j.cemconres.2013.12.005

García Lodeiro, I., Fernández-Jimenez, A., Palomo, A., & Macphee, D. . (2010). Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cement and Concrete Research, 40(1), 27-32. doi:10.1016/j.cemconres.2009.08.004

López, T., Bosch, P., Asomoza, M., Gómez, R., & Ramos, E. (1997). DTA-TGA and FTIR spectroscopies of sol-gel hydrotalcites: aluminum source effect on physicochemical properties. Materials Letters, 31(3-6), 311-316. doi:10.1016/s0167-577x(96)00296-0

Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Hamdan, S., & van Deventer, J. S. J. (2014). Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement and Concrete Composites, 45, 125-135. doi:10.1016/j.cemconcomp.2013.09.006

Gezer, S., & Atalay, U. (2016). Assessment of soda ash calcination treatment of Turkish trona ore. E3S Web of Conferences, 8, 01013. doi:10.1051/e3sconf/20160801013

Methodology for the Free Allocation of Emission Allowances in the EU ETS Post 2012 Sector report for the lime industryhttps://ec.europa.eu/clima/sites/clima/files/ets/allowances/docs/bm_study-lime_en.pdf

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem